PAMS Technical Documentation NSE–8/9 Series Transceivers

Chapter 2 System Module

Contents

Page No

Technical Information	2–5
Operating Modes	2-6
Maximum ratings	2-7
DC Characteristics	2-7
External Signals and Connections	2–10
Internal Signals and Connections	2–21
Technical Summary	2–31
Baseband	2-34
Functional Description	2-34
Charger Initiated Power Up Procedure	2-34
Power Button Initiated Power Up Procedure	2-35
Real Time Clock Initiated Power Up Procedure	2-36
Power Down Schemes	2-37
Clocking Concept	2-40
Resets and Watchdogs	2-41
Power Supply	2-42
Baseband supplies, CCONT	2–45
Charging	2–47
Baseband ADC's	2-50
Digital Part	2– 53
MAD2PR1 system ASIC	2– 53
SRAM Memory	2– 58
EEPROM Memory	2– 59
FLASH Memory	2– 59
Audio	2-62
UI	2-68
Backlight	2-69
Buzzer	2-69
Vibra, NSE–9 only	2-70
LCD	2-70
Keyboard	2-71

2-72
2-74
2-75
2-76
2-77
2-78
2-78
2-80
2-81
2– 81
2-82
2-83
2-84
2-84
2-85
2-85
2-86
2-88
2-88

Table of Figures

Figure 1.	SIM connector, X100 and Battery terminals,	2–10
Figure 2.	Display Connector pin location	2– 12
Figure 3.	Bottom Connector, X503, pin locations (top View)	2– 15
Figure 4.	Bottom Connector, X503, pin locations (BottomView)	2– 15
Figure 5.	Internal Speaker Pads	2–19
Figure 6.	Vibra Motor–connetion pads	2-20
Figure 7.	Baseband Block Diagram	2–31
Figure 8.	Clocking Scheme	2-40
Figure 9.	Reset Scheme	2-41
Figure 10.	Baseband power Distribution	2–43
Figure 11.	DC/DC Converter	2-44
Figure 12.	Principle of SMR power Functions	2-46
Figure 13.	Charging Block Diagram	2–47
Figure 14.	Flash Programming Sequence	2– 56
Figure 15.	Sim Card DetX detection levels	2– 57
Figure 16.	Memory Setup	2– 58
Figure 17.	Digital Interface – CCONT and MAD2PR1	2-60
Figure 18.	Digital Interface – COBBA_GJP and MAD2PR1	2-61
Figure 19.	UI Switch & Transducers	2-68
Figure 20.	RF Frequency Plan	2-73
Figure 21.	Power Distribution Diagram	2-74
Figure 22.	Frequency Synthesiser– Block Diagram	2-75
Figure 23.	Receiver Block Diagram	2–77
Figure 24.	Transmitter Block Diagram	2-80
Figure 25.	Receiver Interface	2– 85
Figure 26.	Transmitter Interface	2– 86
Schematic	s/Layouts (GF7_17)	
	is between RF and Baseband	A –1
		A –2
		A –3
		A –4
		A –5
	асе	A –6
		A –7
		A –8
		A –9
	t Layout – Top	A –10
•	t Layout – Bottom	A –11
-		

Technical Information

HD947 is a DCT3.5 based product, i.e. a dual band GSM 900 & DCS1800, single board concept using the serial version of the MAD2PR1– and COBBA_GJP chip set. HD947 is based on HD945 (PICA) HW with significant modifications in the Baseband as listed below:

- HD947 uses a two cell semi fixed NiMH battery–pack only, giving 2.4V nominal supply voltage. Thus the usual NMP battery interface is modified.
- A special charge control ASIC, PSCC, is used for two cell NiMH charging instead of CHAPS (basically a Chaps modified for 2cells with reduced features).
- The supply voltage inside the phone is delivered by a DC/DC converter, which step up the battery voltage to 3.1 – 4.2 V supplying the regulators and PA's of the phone.
- The DC/DC converter is supplying 4 different voltages ref. depending upon the required power level and phone state.
- HD947 has a special non DCT3 compatible Bottom connector, which supports no DATA, only chargers and external audio.
- Headset HDC-5 and Handsfree unit PPH-1 are supported.
- The external Audio is dual ended uplink and downlink.
- HD947 supports only internal vibra, and in NSE-9 only.
- No support of FLASH ROM writing outside production or aftersales environment.
- HD947 has a separate serial EEPROM.
- Battery removal detection is changed compared to previous NMP standard.
- An integrated switch IC, UISwitch, is used for buzzer, vibra and backlight driving.
- There are no backup supply for the RTC. The watch may have to be reset after battery removal.

The only difference in the Baseband between GF7 and GD7 is that "Col 4" pin on the MAD2PR1 is logically HIGH in GF7 and logically LOW in GD7, to indicate to the SW which kind of PCB is in use. The two different versions are made to accommodate the use of two different sets of PA's.

The only Baseband difference between NSE–8 and –9 is that the vibra is mounted in the mechanical assembly in NSE–9.

Operating Modes

1. Acting Dead:

If the phone is off and the switcher is operating with the lowest output voltage and a charger is connected, the Baseband is powered on but enters a state called "acting dead". To the user the phone acts as if it was switched off. A battery charging alert is given and/or a battery charging indication on the display is shown to acknowledge the user that the battery is being charged.

2. Active Mode:

In the active mode the phone is in normal operation, scanning for channels, listening to a base station, transmitting and processing information. The switcher delivers output voltage level depending upon whether the TX is active and on what power level or if the TX is not active. All the CCONT regulators are operating. There are several sub–states in the active mode depending on if the phone is in burst reception, burst transmission, if DSP is working etc..

3. Deep Sleep Mode:

In the sleep mode all the regulators except, Vcobba, Vref, VBB, (Vcore when MAD2PR1 in C07 is used) and the SIM card VSIM regulators are off. Sleep mode is activated by the MAD2PR1 after MCU and DSP clocks have been switched off. The voltage regulators for the RF section are switched off and the VCXO power control, VCXOPwr is set low. In this state only the 32 kHz sleep clock oscillator in CCONT is running. The flash memory power down input is connected to the VCXO power control, so that the flash is deep powered down during sleep mode.

In sleep mode the switcher supplies minimum output voltage.

The sleep mode is exited either by the expiration of a sleep clock counter in the MAD2PR1 or by some external interrupt, generated by a charger connection, key press, headset connection etc. The MAD2PR1 starts the wake up sequence and sets the VCXOPwr control high. After VCXO settling time other regulators and clocks are enabled for active mode. If the battery pack is disconnect during the sleep mode, the CCONT shall power down the SIM in the sleep mode as there is no time to wake up the MCU.

4. **Power Off mode**:

In this mode all Baseband circuits are powered off. The DC/DC converter is still running supplying the lowest output voltage. Thus the CCONT is powered in the same way as in usual DCT3 products when the phone is powered off and battery remains connected.

Maximum ratings

Parameter	Rating	Condition
Battery voltage, idle mode	–0.3 3.6 V	Max voltage at which the battery can be charged by the phone
Charger input voltage	–5.0 18V	Max voltage which activates the PSCC input over-voltage protection
Temperature range		

Table 1. Maximum ratings

DC Characteristics

Line Symbol	Signal Name	Min	Тур	Max	Unit	Comments
Battery Supply voltage	Vb	1.9	2.4	3.6	V	
Converter startup voltage	Vb	1.2	1.4	1.6	V	V109a release level
		1.4	1.6	1.85	V	V105 start up level
Converter shutdown voltage	Vb	1.2	1.4	1.6	V	V109a activation level
Output over voltage protection	Vdc_out	4.8		6.5	V	V109b activation level
Power on SW limit, normal mode	Vb		2.15		V	
Power on SW limit, acting dead mode	Vb		2.15		V	
Battery cut off voltage (SW)	Vb		1.9		V	

Table 2. Battery & DC/DC converter Voltages

 Table 3. DC/DC converter output voltages when in TX-mode

Line Symbol		tion ** Vcon2	Min	Тур	Мах	Unit	@ Powe 900MHz	r level in 1800MHz
Vdc_out	"L"	"L"	3.1	3.3	3.5	V ***	11 –19	5 – 15
current in TX burst @Vdc_out min *			n/a *)	n/a *)	1120	mArms		
Current be- tween burst @3.3V			n/a *)	n/a *)	150	mArms		

Line	Condition **		Min	Тур	Max	Unit	@ Powe	r level in
Symbol	Vcon1	Vcon2					900MHz	1800MHz
Vdc_out	"H"	"L"	3.2	3.4	3.6	V ***	9 –10	3 – 4
current in TX burst @Vdc_out min *			n/a *)	n/a *)	1360	mArms		
Current be- tween TX burst			n/a *)	n/a *)	150	mArms		
Vdc_out	"L"	"H"	3.7	3.9	4.1	V ***	7 – 8	0 – 2
current in TX burst @Vdc_out min *			n/a *)	n/a *)	2650	mArms		
Current be- tween TX burst			n/a *)	n/a *)	150	mArms		
Vdc_out	"H"	"H"	3.8	4.0	4.2	V ***	5 – 6	N/A
current in TX burst @Vdc_out min *			n/a *)	n/a *)	2900	mArms		
Current be- tween TX burst			n/a *)	n/a *)	150	mArms		
Vdc_out	"H"	"H"	3.8	4.0	4.2	V	for buz vibra a	

Table 3. DC/DC converter output voltages when in TX-mode	(continued)
--	-------------

*) **Note**: Maximum load of Vdc_out during TX burst, when Vdc_out is not allowed to drop below 3.05V, Cout is 20% below nominal and remaining load besides PA is max. 150mA.

) **Note: The SW control makes converter voltage step up before PA power consumption level is increased, and makes converter voltage stay up until PA power consumption is lowered.

***) **Note**: Voltage with no load, voltage will drop during burst, but with the stated current voltage will not drop below 3.05V.

Technical Documentation

Table 4. DC/DC converter output voltages when non Tx-mode							
Line Symbol	Condition Vcon1 Vcon2		Minimum	Nominal	Maximum	Unit	Comment
Vdc_out	Low	Low	3.1	3.3	3.5	V	Off mode
Vdc_out	Low	Low	3.1	3.3	3.5	V	Sleep mode
Vdc_out	Low	Low	3.1	3.3	3.5	V	Active mode non TX
Vdc_out	Low	Low	3.1	3.3	3.5	V	Acting dead mode
Vdc_out	high	high	3.8	4.0	4.2	V	for buzzer & vibra op- eration

Table 4. DC/DC converter output voltages when non Tx-mode

Table 5. Actual Regulated Baseband supply Voltages *

Line Symbol	Signal Name	Min.	Тур	Max.	Unit	Notes
Vbb Baseband supply voltage	Vbb	2.7	2.8	2.87	V	
			15	25	mVac_pp	ripple
			25	125	mArms	
COBBA analog supply voltage	Vcobba	2.67	2.8	2.85	V	
			10	20	mVac_pp	ripple
			7	80	mArms	no audio input output
MAD2PR1 core voltage *	Vcore	-5 %	1.98	+5 %	V	@ start up with MAD2PR1 C07
				TBD	Vac_pp	ripple
				TBD	mArms	
MAD2PR1 core voltage *	Vcore	-5 %	1.5	+5 %	V	for MAD2PR1 in C07
				TBD	Vac_pp	ripple
				TBD	mArms	
5V SIM supply voltage	Vsim	4.8	5.0	5.2	V	V
			10	20	mVac_pp	ripple
3V SIM supply voltage	Vsim	2.8	3.0	3.2	V	V
			10	20	mVac_pp	ripple
Reference Voltage	Vref	1.4775	1.5	1.5225	V	V
			5	15	mVac_pp	ripple

*) **Note**: The values will be updated when C07 devices are available. With MAD2PR1 Vcore is not used.

External Signals and Connections

This section lists and specifies all the electrical connections from the Baseband part of the transceiver, i.e. either to the outside world (Bottom–, SIM card– and battery connector), or to items in the mechanical assembly that has electrical interface (LCD, Vibra, speaker and microphone).

Parameter	connector
SIM Connector	X100
Battery connectors	X101 & X102
Display Connector	X400
Bottom connector	X503
Speaker Connector	B201
Vibra motor connector	E103 & E104

Table 6.	external	connectors
----------	----------	------------

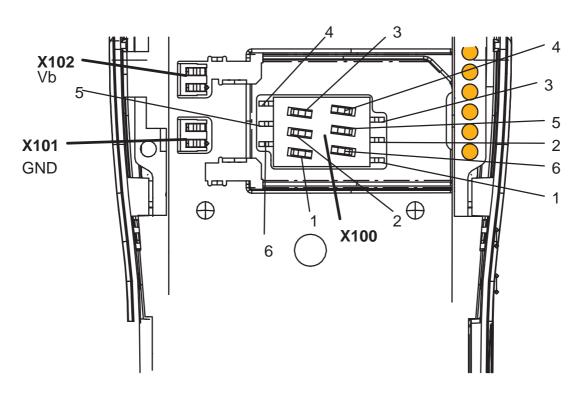


Figure 1. SIM connector, X100 and Battery terminals, X101 & X102, pin locations

Technical Documentation

	i									
Pin	Name	Parameter	Min	Тур	Max	Unit	Notes			
1	GND	GND	0		0	V	Reference ground for the SIM interface signals			
2, 6	VSIM	5V SIM Card	4.8	5.0 5.2 V		V	Supply voltage			
		3V SIM Card	2.8	3.0	3.2					
3	DATA	5V Vin/Vout	4.0	"1"	VSIM	V	SIM data			
			0	"0"	0.4		Trise/Tfall max 1us			
		3V Vin/Vout	2.8	"1"	VSIM					
			0	"0"	0.4					
4	SIMRST	5V SIM Card	4.0	"1"	VSIM	V	SIM reset			
		3V SIM Card	2.8	"1"	VSIM	V				
		5V SIM Card	0	"0"	0.4	V	SIM reset not active			
		3V SIM Card	0	"0"	0.4	V				
5	SIMCLK	Frequency		3.25		MHz	SIM clock			
		Trise/Tfall			25	ns				

Table 7. SIM Connector, X100	Table 7.	SIM	Connector	, X100	
------------------------------	----------	-----	-----------	--------	--

VSIM supply voltages are specified to meet type approval requirements regardless the tolerances in components.

Battery connectors

Pin	Name	Parameter	Min	Тур	Max	Unit	Notes
1, 2	PGND	Power	0		0	V	
	X101	ground			5	mΩ	Total contact resistance
3, 4	VB X102	Battery Voltage	1.8	2.4	3.6	V	Supply to the DC/DC convert- er
					5	mΩ	Total contact resistance

 Table 8. Battery Connectors, X101 & X102

Display connector

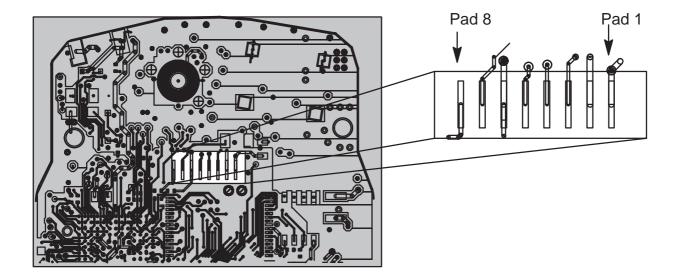
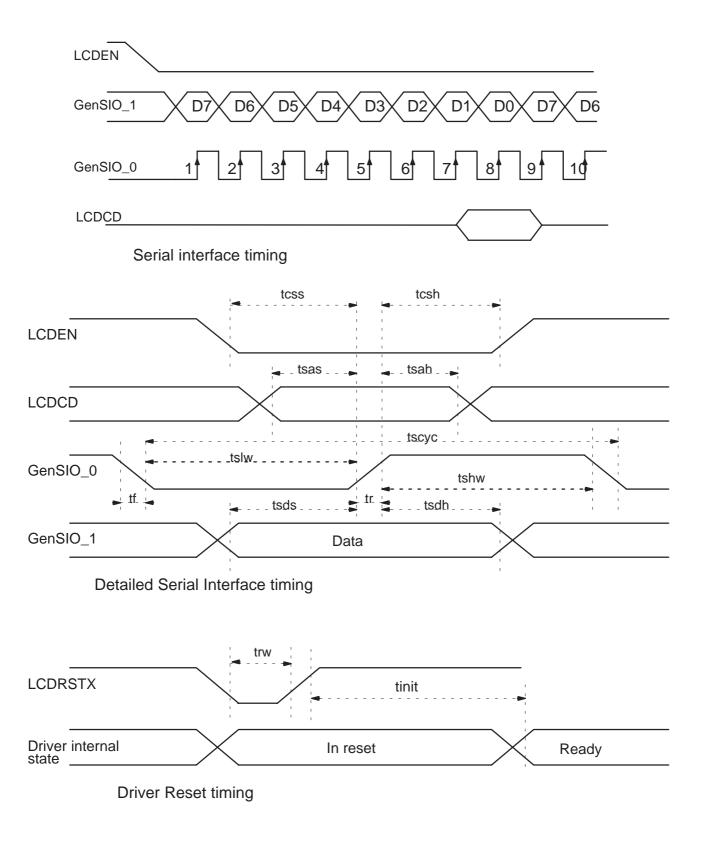
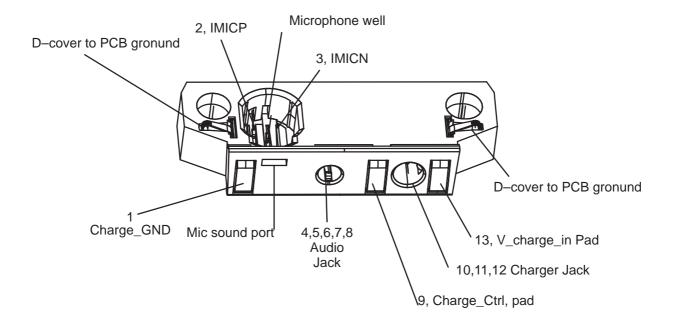
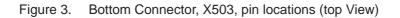


Figure 2. Display Connector pin location


Т	able	9.	Display	connecto	or, i	X400	

P i	Signal	Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
n								
1	VBB		Supply voltage	2.7	2.8	3.3	V	range that LCD supports
						300	uA	+25 °C, VL= 2.8 V, LCDCSX is disabled with Special Test Pattern "12345"
2	GenSIO_0	f _{EXT}	Serial clock input	0	1.083	4.00	MHz	
		tscyc		250			ns	
		tshw		100			ns	
		tslw		100			ns	
		ViH		0.7xVbb		Vbb	V	Logic high
		ViL		0		0.3xVbb	V	Logic low
		tr / tf				10	ns	Rise / fall time
3	GenSIO_1	tsds	Serial data input	100			ns	
		tsdh		100			ns	
		ViH		0.7xVbb		Vbb	V	Logic high


P i	Signal	Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes	
n									
\square		ViL		0		0.3xVbb	V	Logic low	
		tr / tf				10	ns	Rise / fall time	
4	LCDCD	tsas	Control/display data flag input	100			ns	Setup time	
		tsah		100			ns	Hold time	
		ViL		0		0.3xVbb	V	Logic low, Control data	
		ViH		0.7xVbb		Vbb	V	Logic high, Display data	
		tr / tf				10	ns	Rise / fall time	
5	LCDEN	tcss	Chip select input	60			ns		
		tcsh		100			ns		
		ViH		0.7xVbb		Vbb	V	Logic high	
		ViL		0		0.3xVbb	V	Logic low, active	
		tr / tf				10	ns	Rise / fall time	
6	GND	GND	Ground		0		V	In LCD interface	
7	VOUT		LCD output voltage		3xVbb	9	V	from voltage boost- er inside LCD driver	
					6.82	9	V	from voltage boost- er inside LCD driver Philips display	
						9	V	from voltage boost- er inside LCD driver	
8	LCDRSTX	ViH	Reset	0.7xVbb		Vbb	V	Logic high, not ac- tive	
		ViL		0		0.3xVbb	V	Logic low, active	
		trw		100			ns	width for valid reset pulse	
		tinit				1000	ns	driver initialization time after reset	
		tr / tf				10	ns	Rise / fall time	


Table 9	Display	connector,	X400
---------	---------	------------	------

(continued)

Bottom Connector

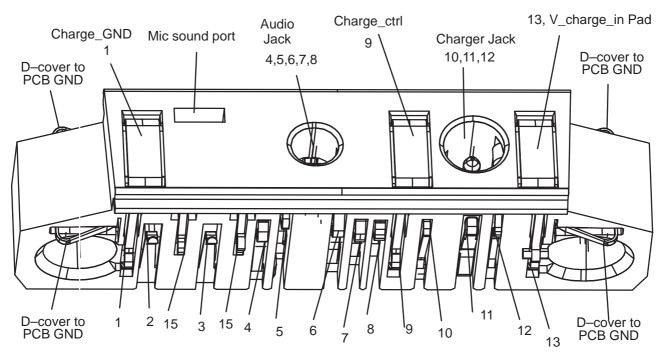


Figure 4. Bottom Connector, X503, pin locations (BottomView)

NSE–8/9 System Module

Technical Documentation

Pin	Name	Parameter	Min	Тур	Max	Unit	Notes
1, 10	Charge _GND	Charger re- turn	-0.3		0	V	W.R.T GND
2	IMICP	IMICP		0.55	4.1	mV	Connected to COBBA MIC2P/N input. The maxi- mum value corresponds to1 kHz, 0 dBmO network level
3	IMICN	IMICN		0.55	4.1	mV	with input amplifier gain set to 32 dB. typical value is maximum value –16 dB.
4	INT	Headint low	0.57	0.65	0.72	V	No plug inserted in audio jack
		Headint high	Vbbmin	Vbb	Vbbmax	V	Plug inserted in audio Jack
5	XEarP *)	positive line for external audio output	113	150	188	Ω	Output AC impedance (ref. XEarN) HDC–5 f<3400 Hz
		HDC–5 mode			0.84	Vpp	Output level (ref. XEarN) HDC–5 f<3400 Hz
		PPH–1 mode	4.0	4.2	4.4	KΩ	Output AC impedance (ref. XEarN) PPH–1 300< f<3400 Hz
					1.8	Vpp_ac	Output level (ref. XEarN) PPH–1 f<3400 Hz

Table 10. Signals of the bottom connector X503

Technical Documentation

Pin	Name	Parameter	Min	Тур	Max	Unit	Notes
6	XMicN *)	Negative line for external audio input to phone			0.025	Vpp	Maximum input signal level (ref. XMicP) with Cobba gain 18dB, 300< f <3400 Hz
		HDC–5 mode		40		dB/dec	Input attenuation, f<300 Hz (ref. XMicP)
			775	895	995	mV	Hook active DC level ref. gnd
			95		380	mV	Hook in–active DC level ref. gnd
			-100		-400	μA	Bias current (ref. XMicP)
		PPH–1 mode			0.5	Vpp	Maximum input signal level (ref. XMicP) with Cobba gain 12dB, 300< f <3400 Hz
				20		dB/dec	Input attenuation, f<300 Hz (ref. XMicP)
			2500			mV	Mute (output DC level), wrt. Charge_gnd without HFM–8
			2130			mV	Mute (output DC level), wrt. Charge_gnd with HFM–8
					2230	mV	Unmute (output DC level), wrt. charge_ gnd without HFM–8
					1850	mV	Unmute (output DC level), wrt. charge_ gnd with HFM–8
7	XEarN *)	Negative line for external audio output HDC–5 mode					See XEarP pin definitions output is symmetrical
		PPH-1 mode					See XEarP pin definitions output is symmetrical

Table 10. Signals of the bottom connector X503 (continued)

Pin	Name	Parameter	Min	Тур	Max	Unit	Notes
8	XMicP *)	Positive line for external audio input to phone			0.025	Vpp	Maximum input signal level (ref. XMicN) with Cobba gain 18dB, 300< f<3400 Hz
		HDC–5 mode		40		dB/dec	Attenuation of input inside phone, f<300 Hz (ref. XMicN)
			1450		2090	mV	Headset identification DC level ref. gnd @ AUXout = 2.1V and PDATA_4 ="L"
			100		400	μΑ	Bias current (ref. XMicN)
		PPH–1			0.5	Vpp	Maximum input signal level (ref. XMicN) with Cobba gain 12dB, 300< f <3400 Hz
				20		dB/dec	Input attenuation, f<300 Hz (ref. XMicN)
			2060	2180	2300	mV	PPH-1 with HFM-8 identifi- cation DC level, wrt. Charge_gnd @ AUXout = "Z" and PDA- TA_4 ="L"
			2490	2600	2720	mV	PPH–1 with out HFM–8 identification DC level, wrt. Charge_gnd @ AUXout = "Z" and PDA- TA_4 ="L"
9,	Charge	PWM exter-	0		0.5	V	Charger control PWM low
12	_Ctrl	nal charge control	2.4			V	Charger control PWM high
				32		Hz	PWM frequency for a 3 wire charger
			1	25	99	%	PWM duty cycle

Table 10. Signals of the bottom connector X503 (continued)

Technical Documentation

							-
Pin	Name	Parameter	Min	Тур	Max	Unit	Notes
11.	V_char	Charger volt-	7.25	7.6	7.95	Vrms	Unloaded ACP–7 Charger
13	ge_IN	age input,		11.1	16.9	Vp	Unloaded Peak voltage
		ACP–7 type	320	370	420	mA	Supply current
					1.1	Apeak	Supply current
		ACP-8 type	5.7	6.0	6.3	Vrms	Unloaded ACP-8 Charger
			500	620	750	mA	Supply current
		ACP–9 type	7.1	8.4	9.3	Vrms	Unloaded & charg_ctrl
			6.0	7.1	8.0	Vrms	PWM= 0%
			720	800	850	mA	Unloaded & charg_ctrl PWM= 25%
							Supply current
15a 15b	Not used	Not used					Internal short circuit in bot- tom connector. Not used in NSE–8/9
16, 17	Charge _GND	Charger re- turn	- 0.3		0	V	wrt. Supply ground

Table 10. Signals of the bottom connector X503 (continued)

Speaker connection

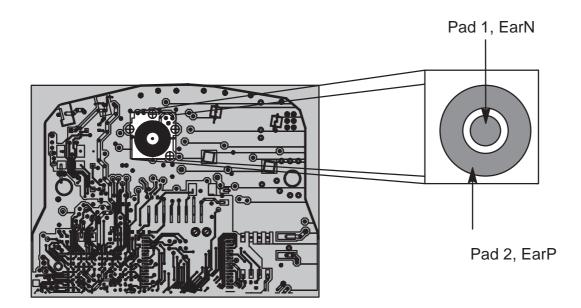


Figure 5. Internal Speaker Pads

Pad	Name	Min	Тур	Max	Unit	Remark				
1	EARN	0	14	220	mVac	Connected to COBBA_GJP EARN output. Typical level corre- sponds to –16 dBmO network level with volume control giving nominal RLR (=+2dB) 8 db below max. Max level is 0dBmO with max volume (codec gain –11 db)				
2	EARP	0	14	220	mVac	Connected to COBBA_GJP EARP output. Typical level corre- sponds to -16 dBmO network level with volume control giving nominal RLR (=+2dB) 8 db below max. Max level is 0dBmO with max volume (codec gain -11 db)				

Table 11. Internal Earpiece connection, B201

Vibra motor connection

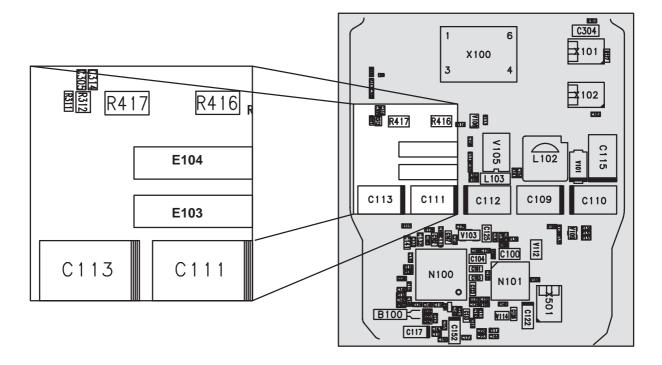


Figure 6. Vibra Motor-connetion pads

Technical Documentation

Table 12. Vibra motor connection, E103 & E104 Pad Name Min Max Unit Comment Тур E103 to E104 1.3 V Rated voltage E103 to E104 Rated current 116 mΑ rms E103 to E104 Operating 1.2 1.9 V rms voltage E103 to E104 Start voltage 1.1 V rms E103 to E104 Start current 135 mΑ rms E103 to E104 internal resis-10.7 ohm tance

Internal Signals and Connections

This section describes all the signal between the Baseband blocks Additionally the signals between the Baseband and the RF section are described.

Name of signal	Туре	Remark
charg_ctrl	input	connected for schematic reasons (use of TVS on audio sheet)
HOOKDET	output	Logical signal indicating whether hook is active or not in accessory Low equals button activated.
HEADDET	output	Logical output indicating whether the audio accessory is inserted (HIGH) or not (LOW).
XEARP	output	Positive line of the external audio downlink signal.
XEARN	output	Negative line of the external audio downlink signal.
XMICP	input	Positive line of the external audio uplink signal
XMICN	input	Negative line of the external audio uplink signal
IMICP	input	Positive line of the internal microphone signal
IMICN	input	Negative line of the internal microphone signal
EAD	output	Analog voltage used for accessory identification.
SERRFI(3:0)	Bus	Serial control for the COBBA_GJP and serial data for the RF interface.
PCM(3:0)	Bus	Serial digital data for the COBBA_GJP audio
COBBACLK	input	System clock for the COBBA_GJP
COBBA RESET	input	Reset signal to the COBBA_GJP
AFC	output	Analog voltage to RF controlling the system frequency
RXC	output	Analog voltage for gain control in the RF-receiver (AGC)
TXC	output	Analog voltage for the TX ramping control

Table 13. Audio Block connections

	•	
Name of signal	Туре	Remark
TXIN	output	Negative line of the in phase transmit signal
TXIP	output	Positive line of the in phase transmit signal
TXQN	output	Negative line of the quadrature phase transmit signal
TXQP	output	Positive line of the quadrature phase transmit signal
RXINP	input	Positive line of the in phase receive signal
RXINN	input	Negative line of the in phase receive signal
KEY_LIGHT	output	Logical signal controlling the keyboard backlight driver.
LCD_LIGHT	output	Logical signal controlling the LCD backlight driver.

Table 13. Audio Block connections	(continued)
	(0011111000)

Name of signal	Туре	Remark
PURX	input	Power on reset
SLEEPCLK	input	32KHz sleep clock signal for MAD2PR1 operation in sleep state
CCONTINT	input	Interrupt line from CCONT to MAD2PR1, for all events in CCONT
HOOKDET	Input	Logical signal indicating whether the hook button of the accessory is activated or not
HEADDET	input	Logical signal indicating whether an accessory is inserted or not
CCONTCSX	output	CCONT Chip select for the serial communication with MAD2PR1
MBUS	bi direc- tional	Serial communication line between MAD2PR1 and external service or pro- duction equipment. Clock line for F–bus communication during flashing.
VIBRA	output	Logical output from MAD2PR1 to the vibra driver in the UISWITCH
VCXOPWR	output	Control of power up/down of the 13MHz system clock, sleep mode control to CCONT
SIMIF(4:0)	bus	Communication lines between MAD2PR1 and the SIM driver in CCONT
GENSIO(1:0)	bus	Serial clock and data for the communication between MAD2PR1 and CCONT, and from MAD2PR1 to LCD–driver.
CHARG_OFF	output	Logical signal controlling charging through PSCC, High disables start- and PWM–charging.
PSCC_PWM	output	Logical signal controlling the charger switch inside PSCC, High switch open, Low switch closed
FBUS_TX	output	Output for serial communication between MAD2PR1 and external service or production equipment.
FBUS_RX	input	Input for serial communication between MAD2PR1 and external service or production equipment.
SERFI(3:0)	bus	communication line between MAD2PR1 and COBBA_GJP for cobba con- trol and receive and transmit data for the RF transmission.

NSE–8/9 System Module

System	Module

Name of signal	Туре	Remark
PCM(3:0)	bus	communication line beteween MAD2PR1 and COBBA_GJP for receive and transmit data for the audio transmission.
COBBACLK	output	13MHz clock for the synchronization COBBA
COBBA RESET	output	Reset signal from MAD2PR1 to Cobba_GJP
COL(3:0)	output	Column addresses for the keyboard scan
ROW(4:0)	input	Row addresses from the keyboard scan and power-on key.
BUZZER	output	PWM output from MAD2PR1 to the Buzzer driver in UISWITCH
LCDCD	output	Control line to the LCD driver
LCDEN	output	Chip select to the LCD driver
LCDRSTX	output	Reset of the LCD driver
VCON_1	output	Least significant bit in the 2-bit DAC control of the DC/DC-converter out- put voltage.
VCON_2	output	Most significant bit in the 2-bit DAC control of the DC/DC-converter out- put voltage.
LOW_BATT	Input	Battery removal alert to MAD2PR1
BTEMP	Input	connection to provide access to BTEMP signal in production and service
SDATA	output	Serial data for the synthesizer inside SUMMA in the RF
SCLK	Output	13/4 MHz clock for the serial communication with the synthesizer inside SUMMA in RF
SENA1	output	Chip select for the serial communication with SUMMA in RF
FRACTRL	output	Controls signal for the gain in the LNA in the RF
ТХР	output	Logical control signal to indicate the power on of the TX circuitry
RFC	Input	13MHz system clock from the RF
BAND_SEL	output	Logical control of the band selection in the front end GSM 900 or DCS 1800

Table 14.	CPU connections	(continued)
100010 111		(0011111000)

Table 15. POWER connections

Name of signal	Туре	Remark
V_CHARGE_IN	input	charger voltage input
CHARGE_GND	input	charger current return
CHARG_CTRL	output	Charger voltage control signal
PSCC_PWM	input	Logical signal from MAD controlling the charger switch inside PSCC, High switch open, Low switch closed
CHARG_OFF	input	Logical signal from MAD enabling / disabling charging through PSCC, High disables both start– and PWM–charging.

NSE–8/9 System Module

Name of signal	Туре	Remark
GENSIO(1:0)	bus	Serial clock and data for communication between CCONT and MAD2PR1, and from MAD2PR1 to LCD–driver
SIMIF(4:0)	bus	5 signals for MAD2PR1 communication with SIM through CCONT
VCXOPWR	input	Control from MAD2PR1 to power on/off the 13 MHz oscillator, sleep mode control
CCONTCSX	input	Chip select for communication with CCONT
CCONTINT	output	Common CCONT event interrupt line to MAD2PR1
SLEEPCLK	output	32KHz clock for MAD2PR1 sleep mode operation
PURX	output	Power up reset signal to MAD2PR1
VDC_out_2	output	Filtered DC/DC output supply for Synth supply regulator in RF
VRX_1	output	Regulator output for Rx part of CRFU in RF
VRX_2	output	Regulator output for Rx part of SUMMA in RF
VSYN_2	output	Regulator output for VCO's and synthezeiser in SUMMA in RF
VXO	output	Regulator output for 13 MHz oscillator in RF
VTX	output	Regulator output for TX parts in SUMMA and CRFU in RF
VCP	output	5v supply for SUMMA in RF
VREF	output	1.5v common voltage reference for Baseband and RF
VDC_OUT	output	DC/DC output supply voltage for PA's, backlight, vibra and buzzer
RF_TEMP	input	Input from temperature sensor in RF
ТХР	input	TX burst synchronization
LOW_BATT	output	Battery removal alert to MAD2PR1
EAD	input	external accessory detection, analog voltage to CCONT EAD ADC
PWRON	input	Phone power on signal to CCONT, watch dog disable
VCON_1	input	DC/DC converter voltage control, LSB of two bit DAC
VCON_2	input	DC/DC converter voltage control, MSB of two bit DAC
BTEMP	output	to test pad to provide access to BTEMP for production and service

Table 15. POWER connections (continued)

Table 16. UI connections

Name of signal	Туре	Remark
WDDIS	input	Connection to panel connector in production for watch dog disable
PWRON	output	Phone power on signal to CCONT
COL(3:0)	input	Column addresses for the keyboard scan
ROW(4:0)	output	Row addresses from the keyboard scan and power-on key.
BUZZER	input	Logical input from MAD2PR1 to the Buzzer driver in UISWITCH
LCDCD	input	Control line to the LCD driver

Technical Documentation

Name of signal	Туре	Remark
LCDEN	input	Chip select to the LCD driver
LCDRSTX	input	Reset of the LCD driver
VIBRA	input	PWM output from MAD2PR1 to the vibra driver in the UISWITCH
KEY_LIGHT	input	Logical signal controlling the keyboard backlight driver in the UISwitch.
LCD_LIGHT	input	Logical signal controlling the LCD backlight driver in the UISwitch.
GENSIO(1:0)	bus	Serial clock and data for communication between CCONT and MAD2PR1, and from MAD2PR1 to LCD–driver

Table 16. UI connections (continued)

RF control and interface

The interface signals between the Baseband and the RF section are shown below.

Signal name	From To	Parameter	Mini- mum	Typi- cal	Maxi- mum	Unit	Function
SERRIF 0	MAD2PR1 COBBA	Logic high "1"	2.0		Vbb	V	Idata for RF
	bi– directional	Logic low "0"	0		0.4	V	
SERRIF 1	MAD2PR1 COBBA	Logic high "1"	2.0		Vbb	V	Qdata for RF
	bi– directional	Logic low "0"	0		0.4	V	
SERRIF 2	MAD2PR1	Logic high "1"	2.0		Vbb	V	CSX, chip select for SERRFI
	COBBA	Logic low "0"	0		0.4	V	BUS
SERRIF 3	MAD2PR1	Logic high "1"	2.0		Vbb	V	SD, control data for
	COBBA	Logic low "0"	0		0.4	V	cobba
COBBA- RESET	MAD2PR1 COBBA	Logic high "1"	2.0		Vbb	V	DSPGENOut5
		Logic low "0"	0		0.4	V	
COBBA– CLK	MAD2PR1 COBBA	Logic high "1"	2.0		Vbb	V	
OLIX	OODBR	Logic low "0"	0		0.4	V	
ТХР	MAD2PR1 CCONT	Logic high "1"	2.0		Vbb	V	
		Logic low "0"	0		0.4	V	

Table 17. Signals within the Baseband controlling the RF

Signal name	From To	Parameter	Mini- mum	Typi- cal	Maxi- mum	Unit	Function
VRX_1	CCONT VR2	DC-voltage	2.67	2.8	2.85	V	for Rx part of CRFU
	CRFU3	voltage ripple when on		10	15	mVpp	
VRX_2	CCONT VR5	DC-voltage	2.67	2.8	2.85	V	for Rx part of Summa
	SUMMA	voltage ripple when on		5	15	mVpp	
VSYN_2	CCONT VR4	DC-voltage	2.67	2.8	2.85	V	for VCO's & Synth. i
	VCO's	voltage ripple		5		mVpp	Summa
VXO	CCONT VR1	DC-voltage	2.67	2.8	2.85	V	for 13 MHz oscillator
	VCTCXO	voltage ripple		5	15	mVpp	
VTX	CCONT VR7	DC-voltage	2.67	2.8	2.85	V	for Tx in Summa &
	CRFU3	Current			150	mA	CRFU
		voltage ripple when on		5	15	mVpp	
VCP	CCONT V5V	DC-voltage	4.8	5.0	5.2		for Summa
	SUMMA	Current			30 – Isim	mA	
		voltage ripple		10	25	mVpp	
VREF	CCONT	DC-Voltage	1.478	1.5	1.523	V	Reference voltage for
	SUMMA	Current			100	uA	SUMMA
		voltage ripple		5	10	mVpp	
Vdc_out	DC/DC–con- verter output to RF PA's	DC–Voltage					
RF_TEM	RF	voltage	0		1.5	V	
P	P CCONT	BB pull up to Vref	-5%	47	+5 %	Kohm	
		RF pull down to gnd		47		Kohm NTC	Ro = 47Kohm +/-10% Bo = 4050 +/-3%
		ADC resolution		10		bits	

Table 18.	AC and DC	Characteristics	of signals	between	Baseband and RF
-----------	-----------	-----------------	------------	---------	-----------------

Signal	From	Parameter	Mini-	Турі-	Maxi-	Unit	Function
name	То	i uluinetei	mum	cal	mum	Onic	T direction
AFC	COBBA_GJP	Voltage	0.046		2.254	V	Automatic frequency
	VCTCXO	Resolution		11		bits	control signal for VCTCXO
		Load resistance (dynamic)	10			kohm	
		Load resistance (static)	1			Mohm	
		Noise voltage			500	uVrms	1010000Hz
		Settling time			0.5	ms	
RXC	COBBA_GJP	Voltage Min	0.12		0.18	V	Receiver gain control
	SUMMA	Voltage Max	2.27		2.33	V	
		Vout tempera- ture dependence			10	LSB	
		Source imped- ance active state			200	ohm	
		Source imped- ance power down state		grou	nded		
		Input resistance	1			Mohm	
		Input capaci- tance			10	pF	
		Settling time			10	us	
		Noise level			500	uVrms	0200 kHz
		Resolution	10			bits	
		DNL			+/0.9	LSB	
		INL			+/- 4	LSB	

Table 18. AC and DC Characteristics of signals between Baseband and RF (continued)

Signal name	From To	Parameter	Mini- mum	Typi- cal	Maxi- mum	Unit	Function
TXC	COBBA_GJP	Voltage Min	0.12		0.18	V	Transmitter power con-
	SUMMA	Voltage Max	2.27		2.33	V	trol
		Vout tempera- ture dependence			10	LSB	
		Source imped- ance active state			200	ohm	
		Source imped- ance power down state		hig	hΖ		
		Input resistance	10			kohm	
		Input capaci- tance			10	pF	
		Settling time			10	us	
		Noise level			500	uVrms	0200 kHz
		Resolution	10			bits	
		DNL			+/0.9	LSB	
		INL			+/- 4	LSB	
		Timing inaccura- cy			1	us	
TXIN / TXIP	COBBA_GJP SUMMA	Differential volt- age swing	1.022	1.1	1.18	Vpp	Differential in–phase TX Baseband signal for the
		DC level	0.784	0.8	0.816	V	RF modulator
		Differential offset voltage (cor- rected)			+/- 2.0	mV	
		Diff. offset volt- age temp. de- pendence			+/- 1.0	mV	
		Source imped- ance			200	ohm	
		Load resistance	40			kohm	
		Load capaci- tance			10	pF	
		DNL			+/- 0.9	LSB	
		INL			+/-1	LSB	
		Group delay mis- smatch			100	ns	

Table 18. AC and DC Characteristics of signals between Baseband and RF (continued)

System Module

Signal name	From To	Parameter	Mini- mum	Typi- cal	Maxi- mum	Unit	Function
TXQN / TXQP	COBBA_GJP SUMMA	Differential volt- age swing	1.022	1.1	1.18	Vpp	Differential quadrature phase TX Baseband
		DC level	0.784	0.8	0.816	V	signal for the RF modu- lator
		Differential offset voltage (cor- rected)			+/- 2.0	mV	
		Diff. offset volt- age temp. de- pendence			+/ 1.0	mV	
		Source imped- ance			200	ohm	
		Load resistance	40			kohm	
		Load capaci- tance			10	pF	
		Resolution	8			bits	
		DNL			+/— 0.9	LSB	
		INL			+/-1	LSB	
		Group delay mis- smatch			100	ns	
RXIP/	SUMMA	Output level		50	1344	mVpp	Differential RX 13 MHz
RXIN	COBBA_GJP	Source imped- ance			tbd.	ohm	signal to Baseband
		Load resistance		1		Mohm	
		Load capaci- tance			tbd.	pF	
SDATA	MAD2PR1	Logic high "1"	2.0		Vbb	V	PLL data
	SUMMA	Logic low "0"	0		0.5	V	
		Load impedance	10			kohm	
		Load capaci- tance			10	pF	
		Data rate fre- quency		3.25		MHz	

Table 18. AC and DC Characteristics of signals between Baseband and RF (continued)

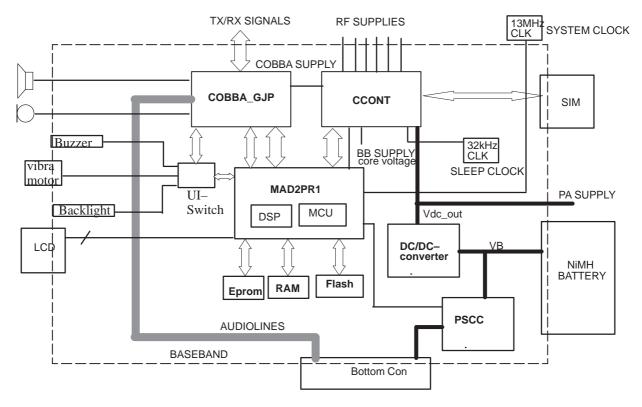

Signal name	From To	Parameter Mini- Typi- Maxi- Un mum cal mum		Unit	Function		
SCLK	MAD2PR1	Logic high "1"	2.0		Vbb	V	PLL clock
	SUMMA	Logic low "0"	0		0.5	V	
		Load impedance	10			kohm	
		Load capaci- tance			10	pF	
		Data rate fre- quency		3.25		MHz	
SENA1	MAD2PR1	Logic high "1"	2.0		Vbb	V	PLL enable
	SUMMA	Logic low "0"	0		0.5	V	
		Current			50	uA	
		Load capaci- tance			10	pF	
FRACT	MAD2PR1	Logic high "1"	2.0		Vbb	V	Nominal gain in LNA
RL	RL CRFU	Logic low "0"	0		0.4	V	Reduced gain in LNA
		Current			0.1	mA	
TXP	MAD2PR1	Logic high "1"	2.0		Vbb	V	Transmitter power con-
	SUMMA	Logic low "0"	0		0.5	V	trol enable
		Load Resistance	50			kohm	
		Load Capaci- tance			10	pF	
		Timing inaccura- cy			1	us	
RFC	VC(TC)XO	Frequency		13		MHz	High stability clock sig-
	MAD2PR1	Signal amplitude	0.5	1.0	2.0	Vpp	nal for the logic circuits
		Load resistance	10			kohm	
		Load capaci- tance			10	pF	
BAND_	MAD2PR1	Logic high "1"	2.0		Vbb	V	GSM900 DSPGenOut 4
SEL	CRFU 3	Logic low "0"	0		0.4	V	GSM1800
		Current			0.1	mA	

Table 18. AC and DC Characteristics of signals between Baseband and RF (continued)

NOTE: Logic controls in low state when RF in power off.

Technical Documentation

Name used in this document	Schematic Ref.	Description			
Cobba_GJP	N200	Mixed signal RF– and audio Codec			
MAD2PR1	D300	System ASIC with MCU and DSP			
FLASH	D301	FLASH ROM			
RAM	D302	Static RAM			
EEPROM	D303	EEPROM			
PSCC	N101	Charger switch control IC			
switcher	V105	DC/DC converter IC			
CCONT	N100	Multi functional power management IC			
UISwitch	N400	Integrated switch IC for UI transducer driving			

Technical Summary

The Baseband architecture is basically similar to DCT3 GSM phones. HD947 differs from DCT3 in the single pcb concept and the serial interface between MAD2PR1 and COBBA_GJP and between MAD2PR1 and CCONT.

In HD947 the MCU, the system specific ASIC and the DSP are

integrated into one ASIC, called the MAD2PR1 chip, which takes care of all the signal processing and operation controlling tasks of the phone.

The Baseband architecture supports a power saving function called "sleep mode". This sleep mode shuts off the VCTCXO, which is used as system clock source for both RF and Baseband. During the sleep mode the system runs from a 32 kHz crystal.

The phone is waken up by a timer running from this 32 kHz clock supply. The sleeping time is determined by some network parameters. When the sleep mode is entered both the MCU and the DSP are in standby mode and the normal VCTCXO clock has been switched off.

The battery voltage in HD947, called Vb, is 1.8V to 3.6V depending on the battery charge amount. The battery voltage is up converted to one of 4 voltage levels in the range from 3.1 V to 4.2 V, called Vdc_out, by means of a DC/DC converter. The nominal level of the four Vdc_out voltages, depends upon the required power level of the RF. The DC/DC converter is always operating, provided that the input supply is greater than 1.8V and with sufficient current capability.

The main part of the Baseband is running from 2.8V power rails, which is supplied by a power controlling asic, CCONT.

The supply, Vcobba, for the analog audio parts, and the supply Vbb for the main digital parts of the Baseband along with Vcore as supply possibility for the core of MAD2PR1.

In the CCONT asic there are 7 individually controlled regulator outputs for the RF–section. In addition there is one +5V power supply output (V5V), also supplied to the RF.

The CCONT also contains a SIM interface, which supports both 3V and 5V SIM–cards. The SIM is supplied from a separate regulator, VSIM, in CCONT.

A real time clock function is integrated into the CCONT, which utilizes the same 32kHz clock supply as the sleep clock. The supply for the RTC is taken directly from Vdc_out. Which means that when the battery is removed the RTC may have to be set again at power up. However the RTC will run for at least 24h after the phone has cut off due to low battery power. Last but not least the CCONT supplies a 1.5V reference voltage, Vref, for AD–converter usage in the Baseband and as reference voltage to the RF.

The COBBA_GJP asic provides A/D and D/A conversion of the in–phase and quadrature receive and transmit signal paths to the RF along with AFC frequency control, AGC receiver gain control and TXC transmitter power control. The remaining RF control signals are supplied by the MAD2PR1, i.e. BAND_SEL for selection between 900 or 1800 MHz band, FrACtrl for amplification control in the receiver front end, and tree signals

for the control of the RF synthesizer.

The COBBA_GJP asic also provides A/D and D/A conversions of received and transmitted audio signals to and from the internal and external audio transducers.

Digital speech processing is handled by the MAD2PR1 asic. Last but not least the COBBA_GJP emits the backlight control signals to the UISWITCH IC, which drives the keyboard– and LCD backlight LEDs.

The Baseband supports 3 microphone inputs together with 2 earphone outputs.

The mic inputs can be taken from an internal microphone, a headset microphone or from an external active microphone signal source. The microphone signals from different sources are connected to separate inputs at the COBBA_GJP asic.

The output for the internal earphone is a dual ended type output capable of driving a dynamic type speaker. Input and output signal source selection and gain control is performed inside the COBBA_GJP asic according to control messages from the MAD2PR1.

Keypad tones, DTMF, and other audio tones except ringing alert are generated and encoded by the MAD2PR1 and transmitted to the COBBA_GJP for decoding.

MAD2PR1 generates a PWM output for the buzzer and a logical high/low signal for driving the internal vibra motor. These control signals together with light control are fed to the UIswitch which drives the backlight, vibra and buzzer units.

The MAD2PR1 communicates via an IIC bus with the EEProm which contains all user changeable data and tuning values. Additionally the memory of HD947 is made up of a FLASH Rom and a SRAM for MCU memory, both sharing a common address– data bus. The DSP memory is completely integrated into the MAD2PR1 asic.

Two wire and three wire chargers can be connected to the phone. Three wire chargers are equipped with a control input, through which the phone gives PWM charging control signal to the charger.

The battery charging is controlled by two different PWM signals, one from CCONT to the charger, CHARG_CTRL, and one from MAD2PR1 to PSCC, PSCC_PWM.

The CHARG_CTRL, is constant 25%, to make the phone the master in case it's inserted into a DCH–9 deskstand.

The PSCC_PWM duty cycle is determined by the charging software.

A 84 by 48 dot matrix LCD is connected via a zebra connector. The MAD2PR1 commands the display driver via a serial write only interface.

Baseband

Functional Description

There are **four** actions that initiate the power up procedure of the phone;

- 1. pressing the power on/off button
- 2. connecting a charger to the phone
- 3. power up initiated by a pulse on BTEMP (DCT3 IBI pulse)
- 4. power up initiated by RTC

Because the power up procedure is somewhat different depending on the initializing action they are described below separately. The power up procedures are described up to the point when the system control switches from CCONT to MAD2PR1, i.e. when power up reset (PURX) is released.

Charger Initiated Power Up Procedure

- 0. INITIAL CONDITIONS:
- all components except DC/DC converter and CCONT RTC powered off
- all resets active
- battery connected

1. CHARGER ADDED:

1.1 The PSCC starts charging the battery with initial current. When the battery voltage reaches the switcher startup voltage level, the switcher will start up and supply the CCONT ¹, which identifies the charger presence (VCHAR)

- 1.2 CCONT waits until Vdc_out exceeds 3.0 V²
- 1.3 CCONT powers on its digital logic and sets the PWM output to100%
- 1.4 CCONT releases the reset of its digital logic after 50 us setup time

2. CCONT RELEASES BB, VCXO and COBBA–ANALOG ³REGULATORS:

- 2.1 CCONT releases SLEEPX/VXOEna signal
- 2.2 CCONT waits 62 ms ⁴

3. AFTER 62 ms DELAY CCONT RELEASES POWER UP RESET (PURX) AND SETS CCONT_INT SIGNAL ACTIVE:

This may take some seconds depending upon the battery / switcher being able to supply sufficient current, if the battery is almost empty,

If charger is connected to empty battery this may take some seconds

VCXO regulator is controlled by SLEEPX/VXOEna signal. The regulator for the COBBA analog parts must follow the VCXO regulator to enable the AFC

62 ms setup time is used for VCXO settling

- 3.1 MAD takes over the system control
- 3.2 the SLEEPX signal control switches to MAD
- 3.3 MAD notices the CCONT_INT active
- 3.4 MAD reads the CCONT interrupt register, identifies the charger interrupt and starts to control the charging

In the end of the power up procedure initialized by adding the charger the phone goes to "POWER ON ACTING DEAD" state. In this state the only indication to the user are the battery charging alert and the scrolling battery mark in the display. In "POWER ON ACTING DEAD" state no actions against GSM network are done, the phone remains unknown to the network.

Power Button Initiated Power Up Procedure

0. INITIAL CONDITIONS:

– all components except DC/DC converter and CCONT RTC are powered off

- all resets active
- battery connected with sufficient energy for power up
- charger is not connected ⁵

1. POWER BUTTON PRESSED:

- 1.1 CCONT identifies the PWRONX signal activation
- 1.2 CCONT checks that the Vdc_out exceeds 3.0 V
- 1.3 CCONT powers on its digital logic
- 1.4 CCONT releases the reset of its digital logic after 50 us setup time

2. CCONT RELEASES VBB, VCXO and Vcobba REGULATORS:

- 2.1 CCONT releases SLEEPX/VXOEna signal
- 2.2 CCONT waits 62 ms 6

3.a. **IF** PWRONX ACTIVE AFTER 62 ms DELAY **THEN** CCONT RELEASES POWER UP RESET (PURX):

- 3.1 MAD takes over the system control
- 3.2 the SLEEPX signal control switches to MAD

3.b. **ELSE** PWRONX NOT ACTIVE AFTER 62 ms **THEN** CCONT GOES TO POWER OFF:

4.a **IF** THE KEYBOARD POWER INTERRUPT IS ACTIVE LONG ENOUGH ⁷**THEN** THE PHONE GOES TO POWER ON/POWER BUTTON STATE

- 4.a.1 MAD system logic releases MCU reset
- 4.a.2 MCU serves the power button interrupt
- 4.a.3 MCU turns on the SIM regulator (SIMCardPwr)

If charger is connected the phone is not in power off state but in POWER ON ACTING DEAD state and hence this power up procedure is not applicable

The 62 ms setup time is used for VCXO settling

The time is checked by MCU SW

- 4.a.4 MCU turns on the keyboard and display lights
- 4.a.5 MCU performs PIN enquiry i.e. checks if PIN code needs to be asked and if yes, asks it
- 4.b **ELSE** THE KEYBOARD POWER INTERRUPT IS NOT ACTIVE LONG ENOUGH THEN THE PHONE STARTS POWER DOWN PROCEDURE

In the end of this power up procedure the phone is in a state where it is ready for network synchronization and communication with the user.

Real Time Clock Initiated Power Up Procedure

The RTC initiated power up procedure is used when a time alarm set in the RTC is reached. The phone will be powered up to the POWER ON/RTC ALARM state.

- 0. INITIAL CONDITIONS:
- all components except DC/DC converter and CCONT RTC powered off
- all resets active
- battery connected with sufficient energy for power up
- ALARM value set

1. REAL TIME MATCHES ALARM VALUE:

- 1.1 RTC logic sends power on command to CCONT analog part
- 1.2 CCONT checks that Vdc_out exceeds 3.0 V
- 1.3 CCONT powers on its digital logic
- 1.4 CCONT releases the reset of its digital logic after 50 us setup time

2. CCONT RELEASES VBB, VXO and Vcobba REGULATORS:

- 2.1 CCONT releases SLEEPX/VXOEna signal
- 2.2 CCONT waits 62 ms

3. AFTER 62 ms DELAY CCONT RELEASES POWER UP RESET (PURX) AND SETS CCONT_INT SIGNAL ACTIVE:

- 3.1 MAD2PR1 takes over the system control
- 3.2 the SLEEPX signal control switches to MAD2PR1
- 3.3 MAD2PR1 notices the CCONT_INT active
- 3.4 MADPR1 reads the CCONT interrupt register and identifies the alarm interrupt

4. THE PHONE GOES TO POWER ON/RTC

- 4.1 MCU serves the alarm
- 4.2 MCU turns on the SIM regulator (SIMCardPwr)
- 4.3 MCU flashes the keyboard and display lights and sounds the alert
- 4.4 The SW asks **IF** the alert should be delayed **IF** navi–key pressed **THEN** go to INITIAL CONDITION **ELSE** the SW asks if the phone should be activated for network connection
- 4.5 MCU performs PIN enquiry i.e. checks if PIN code needs to be

asked and if yes, asks it

- 4.6 MCU starts communicating with the world
- 5. POWER ON/RTC:
- BB regulator active
- VCXO regulator active
- COBBA-analog regulator active
- SIM regulator active
- MAD controls the system
- power on indicated to the user

In the end of this power up procedure the phone is in "POWER ON/RTC" state where it will indicate the alarm to the user by beeps and/or display information. It shall be noted that the RF part of the phone is not turned on in this state in order to disable the transmissions not controlled by the user. How the phone changes state from "POWER ON/RTC" state to normal operational mode is a matter of MCU SW and UI SW specifications.

Power Down Schemes

There are four ways to power down the phone:

- 1. by pressing power on/off button,
- 2. by letting the CCONT watchdog expire,
- 3. by letting the battery voltage drop below the operation limit (either by not charging the battery or by removing it)
- 4. by removing the charger (in "POWER ON/ACTING DEAD" state only).

Power button initiated power down procedure

0. INITIAL CONDITIONS: ANY OPERATIONAL STATE

1. POWER BUTTON PRESSED (FOR POWER OFF):

- 1.1 MCU SW detects that power button is pressed long enough to start power down procedure
- 1.2 MAD2PR1 (MCU SW) updates and disconnects SIM, close down network and UI connections

2.a **IF** CHARGER CONNECTED (CCONT_INT ACTIVE) **THEN** GO TO "POWER ON ACTING DEAD" STATE:

- BB regulator active
- VCXO regulator active
- COBBA–analog regulator active
- MAD controls the system and the charging
- 2.b ELSE SEND POWER OFF COMMAND TO CCONT:

2.b.1 MAD sends power off command (writes short delay to WDOG)

- 3. POWER DOWN THE SYSTEM
- 3.1 CCONT waits until the watchdog expires

- 3.2 CCONT activates power up reset (PURX) signal which disables all regulators (system control switches to CCONT at PURX activation)
- 3.3 CCONT powers itself off

4. POWER OFF STATE

– all components except CCONT RTC and DC/DC converter are powered off

all resets active

There is a delay of 100 us between the expiring of the watchdog and reaching the power off state. During this time CCONT does not accept charger detection nor power on interrupts, i.e. if user generates these interrupts during the 100 us delay they don't have any effect and the phone stays off.

Watchdog Initiated Power Down Procedure

Watchdog initiated power down is typically a result of a phone malfunction, like SW errors, when the CCONT watchdog is not reset by SW. Because of this the watchdog initiated power down can be entered in any operational state. Watchdog can be disabled by HW means by connecting the CCONT WDDisX pin to ground.

- 0. INITIAL CONDITIONS: ANY OPERATIONAL STATE
- watchdog enabled
- 1. CCONT WATCHDOG EXPIRES
- 2. POWER DOWN THE SYSTEM
- 2.1 CCONT activates power up reset (PURX) signal which disables all regulators (system control switches to CCONT at PURX activation)
- 2.2 CCONT powers itself off

3. POWER OFF STATE

– all components except CCONT RTC and DC/DC converter are powered off

all resets active

There is a delay of 100 us between the expiring of the watchdog and reaching the power off state. During this time CCONT does not accept charger detection nor power on interrupts, i.e. if user generates these interrupts during the 100 us delay they don't have any effect and the phone stays off.

Battery Voltage Drop Initiated Power Down Procedure

When battery voltage approaches the cutoff voltage the phone will notify the user of the situation. If the user does not charge the battery the battery voltage will eventually drop below the operation cutoff voltage and the phone powers off. The power down procedure can be entered from any operational state.

A brutal way for power down is to remove a battery when the phone is powered on. The phone gets warning of this by LOW_BATT detection signal which is connected directly to MAD (CARDDETX). When MAD realizes that battery is being removed it has 2 - 4 ms time to power down the SIM interface in order to protect the SIM card. MAD2PR1 forces down the SIM reset, SIM clock, SIM data and SIM power in this order.

Charger Removal Initiated Power Down Procedure

0. INITIAL CONDITIONS: POWER ON/ACTING DEAD STATE

- 1. CHARGER REMOVED
- 1.1 MAD gets CCONT_INT interrupt
- 1.2 MCU reads the status of the CCONT interrupt register and notifies charger removal
- 1.3 MAD sends power off command (writes short delay to WDOG)
- 2. CCONT WATCHDOG EXPIRES

3. POWER DOWN THE SYSTEM

- 3.1 CCONT activates power up reset (PURX) signal which disables all regulators (system control switches to CCONT at PURX activation)
- 3.3 CCONT powers itself off
- 4. POWER OFF STATE
- all components except CCONT RTC and DC/DC converter powered off
- all resets active

System Module

Clocking Concept

This section describes the main clocks in the system.

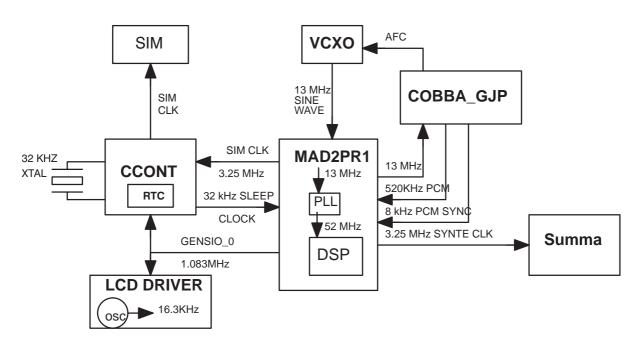


Figure 8. Clocking Scheme

The **system clock** in the HD947 phone is 13 MHz. It is generated in the RF VCTCXO circuit. The clock frequency is controlled by AFC which is in COBBA_GJP. The 13 MHz sine wave signal goes to MAD2PR1 RFC block which generates a square wave signal from the sine wave signal.

MAD2PR1 provides the clocks to its internal system components from the 13 MHz system clock. The MCU receives 13 MHz clock. For the DSP the MAD2PR1 system logic provides an 13 MHz clock which is up converted by the DSP PLL 52 MHz. MAD2PR1 generates also the clocks to its own system logic blocks.

The **real time clock** logic consists of RTC logic in CCONT, and the 32 kHz crystal.

In normal situation the real time clock takes the power from the switcher output. When the cutoff voltage is reached the switcher continues to operate at least 24h, providing supply for the RTC.

In case the main battery is removed the RTC is powered by the output capacitors on the switcher until they are drained and the RTC loses it's timing. The time must be set again upon power on.

CCONT generates a 32 kHz **sleep clock** signal which is used as a time base during the sleep state. The 32 kHz clock signal goes to MAD2PR1 which has the sleep state counter. Sleep clock output to MAD2PR1 is active always when the phone is powered on.

Cobba_GJP uses the 13 MHz clock, **COBBACLK**, coming from MAD2PR1 as a system clock. The 520KHz PCM codec master clock, **PCMDCIk**, and the 8 KHz PCM codec frame synchronization clock, **PCMSCIk**, are the two PCM codec related clocks going from COBBA_GJP to MAD2PR1. The master clock is used to clock the transfer of the PCM samples between COBBA PCM codec and MAD2PR1 DSP. The frame synchronization clock frequency is used to indicate the sample rate of the PCM samples.

A 3.25 MHz synthesizer clock, **SynthClk**, is used to load the synthesizers. The clock is generated in MAD2PR1 and it goes to SUMMA in RF.

MAD2PR1 provides the **SIM clock**, 3.25 MHz, to the SIM card via CCONT SIM interface.

The MAD2PR1 general purpose serial output, **GenSIO_0**, is a 1.083 MHz clock which is used in the communication between MAD2PR1 – CCONT and MAD2PR1 – LCD driver.

The LCD driver IC is equipped with an internal free running clock oscillator of typically 16.3 KHz used for internal logical operation and divided into the display frame frequency of 80 Hz.

Resets and Watchdogs

This section describes the resets and the watchdogs of the system. They are described together because they are linked together, i.e. expired of a certain watchdog causes a certain reset to happen.

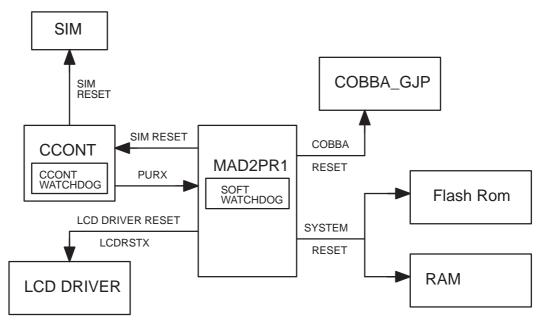


Figure 9. Reset Scheme

Power up reset, **PURX**, is the main reset of the system. It is controlled by the CCONT digital part and is released in the power up. PURX is related to the CCONT watchdog which in turn is the main watchdog of the system. CCONT watchdog is controlled by the MCU SW which has to update it at regular intervals. If the CCONT watchdog expires then PURX goes activate and the power of the phone is turned off. The watchdog maximum value is 64 s and the default value is 32 s.

System reset is a general purpose reset and is used to reset the phone at any time when the phone is operating, i.e. PURX is not active. System reset goes asynchronously active if MCU writes the software reset or if the software watchdog expires. System reset follows also the power up reset, i.e. system reset is active when PURX is active.

One of the DSP controlled general purpose output lines, DSPGenOut_5 is used for **COBBARESET**. The reason for having a separate reset for COBBA is to allow the DSP SW to reset COBBA without resetting other parts of the system. Because COBBA reset is a lower level reset than power up reset, system reset and DSP reset, it is activated also when these resets are activated. COBBA reset is released by DSP software.

The MCU controlled general purpose I/O line, MCUGenIO_2, is used as the **LCD driver reset**. MCU SW can activate and release the reset. LCD driver is not connected to the system reset because having a separate reset for it allows resetting the system without the user knowing it.

MAD2PR1 generates reset to SIM card, SIMIF_2. The reset goes to the SIM card via the CCONT SIM interface block.

Power Supply

The DC/DC converter is the only unit which draws current from the 2 cell NiMH battery pack. The battery voltage, Vb, is up converted through the DC/DC converter to an output voltage level, Vdc_out, which is dependent on the phone state (operating mode) and in call mode depending upon which band and on what power level the phone is transmitting at.

The DC/DC converter feeds power directly to four parts of the system: the CCONT, the power amplifier, the UI (buzzer, Vibra, display– and keyboard– lights) and for a separate regulator in the RF. The Baseband contains components that control power distribution to the whole phone, except for the PA control in RF.

The battery consists of two NiMH cells and a polyswitch, all assembled into the battery pack. An external charger can be used for recharging the battery and supplying power to the phone. The charger can be either a two wire type of charger, or a 3–wire charger, so called performance charger.

The power management circuit PSCC provides protection against over voltages, charger failures and pirate chargers etc. that would otherwise cause damage to the phone.

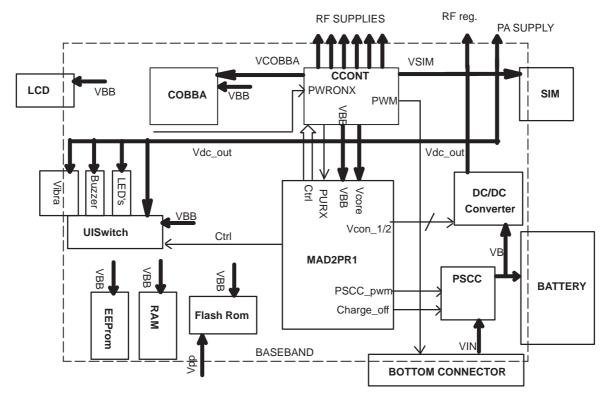


Figure 10. Baseband power Distribution

DC/DC Converter

The DC/DC–converter principal implementation in NSE–8/9 is shown Figure 11. V105 is the switcher ic, TEA1210 which contains the control logic together with the switching transistors.

R102, R105 and R112 forms the main voltage divider for the feedback voltage to the FB pin. The switcher will adjust the output voltage in order to achieve 1.24V at the FB pin. The two transistors V108a & b forms together with R113 and R114 a simple 2 bit DAC, which depending upon the control signals Vcon_1 (LSB) and Vcon_2 (MSB) from the MAD2PR1, changes the voltage divider. V105 responds by changing Vdc_out in order to keep the voltage on the FB pin constant.

The voltage control has been implemented to reduce Baseband loss in idle mode and PA loss at low Tx power levels while achieving better conversion efficiency due to lower conversion ratio. Additionally at high power levels it is necessary to increase the output voltage to accommodate the PA current consumption which exceeds the current capability of the converter IC.

System Module

The main portion of the power for the PAs during Tx burst are supplied by the output capacitors, C109 – C113, the switcher current being limited to 1.6 A in burst, and 1.0 A in between bursts. The capacitors are recharged in between the Tx bursts, with less current to obtain a better converter efficiency. The output voltage is selected as low as possible, but still sufficiently high, in order to prevent Vdc_out from dropping below the CCONT regulation level of 3.1V, due to the current drawn during Tx burst.

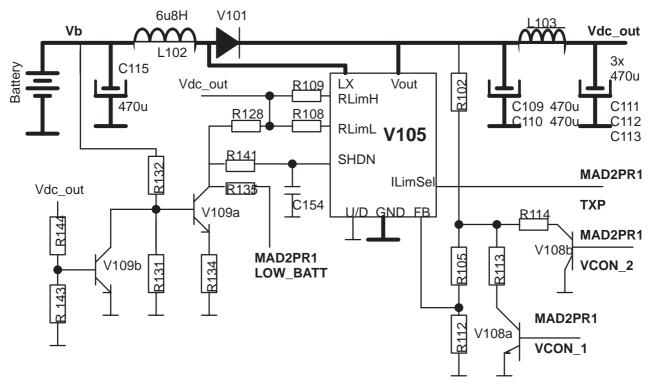


Figure 11. DC/DC Converter

The 5 x 470uF output capacitors has been chosen to have low ESR to achieve a compromise between output ripple, drop during Tx burst, conversion ratio and efficiency.

The TXP from MAD2PR1 selects between two current limits, determined by R108 and R109. TXP is active during the TX burst thus commanding a higher current through the converter without saturating the coil L102. In between the Tx bursts, when in call, the switcher current is lowered for efficiency reasons, but still insuring full re–charge of the output capacitors at the succeeding Tx burst.

The switching frequency is app. 600 KHz and in order to avoid emission in neighboring channels, due to the PA being supplied from Vdc_out a ferrite bead, L103 is inserted to attenuate the switching frequency.

The schottky diode, V101 is only conducting during the small time when power FET conduction inside V105 is shifted.

The resistors R131 and R132 forms together with the transistor V109a and R134 a circuit which will shut down the switcher when the battery voltage reaches 1.4V in order not to drain the battery below a limit of insufficient current capability. Additionally this circuit generates via V109b an interrupt to the MAD2PR1 SIMCardDetX, when the battery is removed, in order to insure the proper shutdown sequence of the SIM card.

Baseband supplies, CCONT

The heart of the Baseband power distribution is the CCONT. It includes all the voltage regulators and feeds the power to the whole system. The Baseband digital parts are powered from the VBB regulator which provides 2.8V supply. The Baseband regulator is active always when the phone is powered on. The VBB Baseband regulator feeds MAD2PR1, memories, COBBA_GJP digital parts and the LCD driver. Additionally the NSE–8/9 is prepared for a separate supply, Vcore for the core logic in the future version of MAD2PR1 C07 process. The core supply can be enabled by inserting R315 and removing R314. The SW identifies the MAD2PR1 type (to be C07) and commands the CCONT core regulator accordingly.

The COBBA_GJP analog parts are powered from a dedicated 2.8V supply, Vcobba, which can be turned off in sleep mode.

The CCONT contains a real time clock function, which internally is powered from the switcher output. When the phone is powered off the switcher continues to operate at it's lowest output voltage level, thus still supplying the RTC. When the battery SW cutoff voltage is reached the switcher continues to operate at least 24h, providing supply for the RTC. In case the main battery is removed the RTC is powered by the output capacitors on the switcher until they are drained and the RTC loses it's timing. The time must be set again upon power on.

Operating mode	Vref	RF REG	VCOB- BA	VBB	VSIM	SIMIF
Power off	Off	Off	Off	Off	Off	Pull down
Power on	On	On/Off	On	On	On	On/Off
Reset	On	Off VXO On	On	On	Off	Pull down
Sleep	On	Off	On	On	On	On/Off

Table 20. Regulator activity in different operating modes

Vsim

There is a switched mode supply for SIM–interface. The SIM voltage is selected via serial IO. The 5V SMR can be switched on independently of the SIM voltage selection, but can't be switched off when VSIM voltage value is set to 5V.

Characteristics	Condition	Min	Тур	Мах	Unit
Output voltage VSIM	Over temperature Over current	2.8 4.8	3.0 5.0	3.2 5.2	V
Output voltage V5V	Over temp & cur- rent	4.8	5.0	5.2	V
Output voltage V5V_2	Over temperature	5.0		6.0	V
Output current VSIM	Continuous DC			30 *)	mA
Output current V5V	Continuous DC			30 *)	mA
current consumption VSIM	on sleep		200 100	330 150	uA uA

Table 21. Electrical characteristics of VSIM and V5V

NOTE: VSIM and V5V can give together a total of 30mA.

In the next figure the principle of the SMR / VSIM–functions is shown.

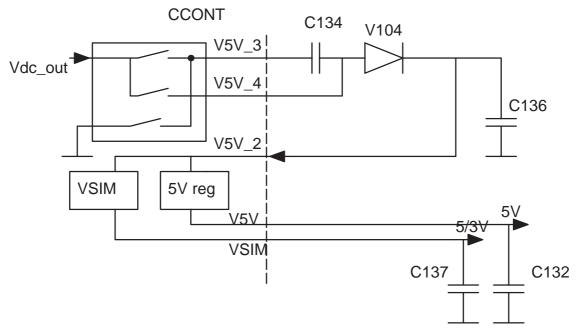
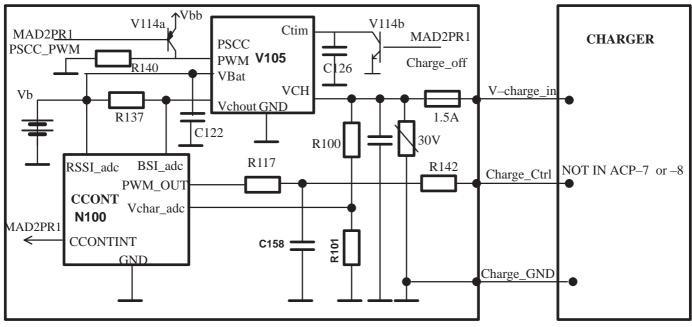



Figure 12. Principle of SMR power Functions

Charging

At the phone end there is no difference between a plug–in charger or a desktop charger. The DC–jack pins and bottom connector charging pads are connected together inside the phone.

TRANSCEIVER

The PSCC is the charging control ASIC, basically a CHAPS known from DCT3 but modified for operation on lower supply level and reduced for 2 cell NiMH battery only. The ASIC has the following main functions:

- controlled low drop power switch
- input transient voltage protection
- thermal self protection
- output over voltage protection (voltage limit for phone hardware)
- start-up regulator with limited charge current, Istart
- provision for soft switching (external capacitor needed), C126
- control of different charger types (different PWM frequencies 1Hz and 32Hz)

The power switch is controlled according to PWM input via V114a. PSCC_PWM is supplied from the MAD and is different from the external charge control PWM signal, which is supplied by the CCONT. When PSCC_PWM is low, the switch is turned ON and the output current, lout, equals the charger current, except for the internal PSCC supply

consumption. When PSCC_PWM is high, the switch is OFF and the output current is zero or Istart , depending upon Vb. In MAD2PR1 power on / reset mode PSCC_PWM is default high.

When Vb is below Vstart limit and it is needed to stop any charging current (even Istart), e.g. when detecting external audio accessory, the MAD can disable any charge current by commanding CTIM pin low via V114b by setting CHARG_OFF signal high. The MAD pin controlling V114b is low during power on / reset. The CHARGE_OFF signal always takes precedence over PSCC_PWM, i.e. Istart is zero.

Parameter	Symbol	Min	Тур	Max	Unit
Vb limit @ IStart cutoff	Vstart	2.33	2.43	2.52	V
Start–up regulator output current @Vb = 0V Vstart	Istart	150	180	210	mA
Charging current limitation	Icharge	1.5	1.8	2.1	А
Vb Output voltage cutoff limit	Vlim	3.32	3.46	3.6	V
Charger input voltage protection limit	Vch	18			V
Vb threshold voltage to enter PWM mode	Vpwm	1.9	2.0	2.1	V
PWM input logic control levels	Vil	0		0.7	V
	Vih	1.8		2.85	V

Table	22.	PSCC	characteristics
-------	-----	------	-----------------

Startup charging

When a charger is connected, the PSCC is supplying a startup current, Istart to the battery.

Istart provides initial charging to the phone with an empty battery. The PSCC charges the battery until Vb reaches the switcher start up voltage, where the DC/DC converter powers up at it's lowest output voltage level. When Vdc_out reaches 3.0 V the CCONT powers up, recognizes charger input, releases PURX reset signal and program execution starts. If the current consumption is too high, Vb will drop below the switcher shutdown limit, and it shuts down. The PSCC will continue charging with Istart. Vb increases again and the power on sequence will repeat as described until Vb and the energy content of the battery is sufficiently high to support a full Baseband / MCU power on by the phone.

The MCU SW controls when the charging mode is changed from startup–charging to PWM–charging (fast charging).

If the battery voltage reaches Vstart limit, before the SW has taken control over the charging, the startup current is switched off by the PSCC.

Software controlled charging

PWM charging (fast charging) is controlled by the MCU software. The sw performs a charger detection and tries to recognize the charger by a mix of charger voltage, and charger current measurement) via the ADC's in CCONT.

When the charger has been recognized as valid, the SW tries to force the PSCC into fast charging, by pulling PSCC_PWM low, no matter how low the battery voltage is. As soon as Vb reaches the threshold when the internal state of the PSCC is changed to PWM mode (Vb>Vpwm) the PSCC responds to the PWM control and closes the internal power switch. In this state the charging current is determined by the actual charger.

When using a 3 wire charger (ACP–9 type) the external charge control signal, CHARG_CTRL, is supplied with a constant 32Hz with a duty cycle of 25% high, 75% low PWM signal originated from the PWM output in CCONT. The three wire charger is thus supplying a voltage of about 7 V. The PSCC_PWM is controlled as for the other chargers. Two wire chargers supplies maximum voltage according to their current capability.

The SW is capable of controlling the charge current by PSCC_PWM signal from MAD. When PSCC_PWM is low the PSCC power switch is closed thus max current is flowing. When PSCC_PWM is high the switch is open, thus no current is flowing (except Istart, if Vb is below the threshold, and the state of the CHARGE_OFF signal).

Battery over voltage protection

Vb over voltage protection is used to protect the phone against damage. This function is also used to define the charging cutoff voltage for the battery.

Output over voltage protection is needed also in the case if the battery is removed when a charger is connected (or a charger is connected to the phone before the battery).

The power switch is immediately opened if Vb rises above the threshold voltage VLIM. When the switch in output over voltage state has once turned OFF, it stays OFF until the charger has been disconnected and re–inserted.

Baseband ADC's

The NSE–8/9 Baseband ADC's are configured completely different compared to conventional DCT3 products.

Property	Signal name	HD947 ADC	DCT3 ADC	Comment
Charger Voltage	V_charge_in	Vchar	Vchar	ADC to be aligned
Battery Voltage	Vb	RSSI	Vbat	ADC to be aligned
switcher output voltage	Vdc_out	Vbat	Not used	ADC to be checked in alignment
PSCC ouput voltage	Vchout	BSI	lchar	Not to be checked in alignment
Charger current	N/A	(BSI–RSSI)	lchar	charger current is as a voltage difference over a
		Rsens		sense resistor
Battery Temperature	BTEMP	BTEMP	BTEMP	ADC to be checked in alignment
RF-temperature	RF_temp	VCXOTEMP	VCXOTEMP	ADC to be checked in alignment
External Accessory iden- tification	EAD	EAD	EAD	ADC to be checked in alignment

Table 23. NSE-8/9 CCONT ADC Usage

Charger Voltage

Parameter	min	typ	max	Unit	Comment
Resolution		10		bits	1024 ADC output values
Conversion error	29.6	32.2	35.8	mV	corresponding to +/- 2 LSB
V_charge_in range	0		16.9	V	Charger voltage range
V_charge_in voltage @ ADC saturation	14.8	16.5	18.4	V	adc reading 1023
V_charge_in ADC reso- lution	14.5	16.1	17.9	mV/bit	
Vchar_adc input range	0.1		Vref	V	Vref =1.5V +/- 2% min limit due to CCONT
Uncalibrated ADC read- ing @8.4V	465	521	585		For calibration in produc- tion and service

Table 24. Charger voltage ADC properties

The capacitor C146 is applied to attenuate the noise originated from the different ground reference points and general TDMA and other noise.

Battery Voltage

The ADC is to be calibrated in production / service, with a one point calibration at 2.7V.

Parameter	min	typ	max	Unit	Comment
Resolution		10		bits	1024 ADC output values
Conversion error	8.6	9.4	10.2	mV	corresponding to +/- 2 LSB
Vb range	0		3.6	V	range given by PSCC
Vb voltage @ ADC satura- tion	4.4	4.8	5.2	V	ADC reading 1023
Vb ADC resolution	4.3	4.7	5.1	mV/bit	
Vrssi_adc input range	0.1		Vref	V	Vref =1.5V +/- 2% min limit due to CCONT
Un–calibrated ADC read- ing @2.7V	525	575	625		

Table 25. Battery voltage, ADC properties

The capacitor C154, is applied to attenuate the noise originated from the different ground reference points and general TDMA and other noise.

Battery Temperature

The battery temperature is measured with a NTC (R0=47k $\Omega \pm 10$ % with B = 4050 ±3 %), R127, placed on the transceiver PCB close to the battery ground terminal,X101, which acts as a thermal conductor. The BTEMP line has a 100k pull–up,R125, to VREF.

The MCU can calculate the battery temperature by reading the BTEMP line DC–voltage level with the CCONT BTEMP A/D–converter.

_ _

Table 26.	Temperature	conversion	constants

Value	Reference	Nominal value	Tolerances
Vref [volt]	N100	1.5	\pm 1.5 %
R0 [Kohm]	R127	47	\pm 10%
Tref [Kelvin]		298	0
B [Kelvin]		4050	\pm 3 %
Rpu [Kohm]	R125	47	\pm 5.0 %

Table 27. ADC reading and NT	C resistance vs. temperature
------------------------------	------------------------------

T [°C]	ADC read	R [kΩ]	T [°C]	ADC read	R [kΩ]	T [°C]	ADC read	R [kΩ]
-40	976	2074	5	568	124.8	50	144	16.4
-35	957	1440	10	502	96.5	55	122	13.6
-30	931	1015	15	439	75.3	60	104	11.3

System Module

Technical Documentation

Table 27. Abe reading and wro resistance vs. temperature								
T [°C]	ADC read	R [kΩ]	T [°C]	ADC read	R [kΩ]	T [°C]	ADC read	R [kΩ]
-25	899	725.7	20	381	59.3	65	88	9.4
-20	860	525.7	25	327	47.0	70	75	7.9
-15	812	385.7	30	279	37.6	75	64	6.7
-10	758	286.2	35	238	30.2	80	55	5.7
-5	698	214.8	40	201	24.5	85	47	4.8
0	634	162.9	45	171	20.0	90	41	4.1

Table 27. ADC reading and NTC resistance vs. temperature

Table 28. Battery voltage, ADC properties

Parameter	min	typ	max	Unit	Comment
Resolution		10		bits	1024 ADC output values
Conversion error	-3.5	0	3.5	°C	incl. comp tolerances and +/- 2 LSB, between - 20 and +70 °C
BTEMP voltage range	0		Vref	V	range given by NTC
voltage @ ADC saturation		Vref		V	ADC reading 1023
BTEMP_adc input range	0.1		Vref	V	Vref =1.5V +/- 2% min limit due to CCONT
Un–calibrated ADC read- ing @25 °C	294	327	361		

The capacitor C143, is applied to attenuate the noise originated from the different ground reference points and general TDMA and other noise.

PSCC out voltage

Table 29. PSCC output voltage, ADC properties

Parameter	min	typ	max	Unit	Comment
Resolution		10		bits	1024 ADC output values
Conversion error	8.6	9.4	10.2	mV	corresponding to +/- 2 LSB
PSCC Vchout range	0		3.6	V	range given by PSCC
PSCC Vchout voltage @ ADC saturation	4.4	4.8	5.2	V	ADC reading 1023
PSCC Vchout ADC resolution	4.3	4.7	5.1	mV/bit	
Vbsi_adc input range	0.1		Vref	V	Vref =1.5V +/- 2% min limit due to CCONT
Un–calibrated ADC reading @2.7V no charging current	525	575	625		

The capacitor C162, is applied to attenuate the noise originated from the different ground reference points and general TDMA and other noise.

Parameter	min	typ	max	Unit	Comment		
Resolution		10		bits	1024 ADC output values		
Conversion error			13	mV	corresponding to +/- 2 LSB		
Vdc_out range	0		6.5	V	range given by Vdc_out over voltage protection		
Vdc_out voltage @ADC saturation	6.52	6.65	6.78	V	ADC reading 1023		
Vdc_out resolution	6.4	6.5	6.6	mV/bit			
Vbat_adc range	0.1		Vbat- max	V	Vbat_max =6.65V +/- 2.0% min limit due to CCONT		
Un–calibrated ADC read- ing	618	631	644		@ Vdc_out = 4.1V		

Vdc_out voltage

Table 30. Switcher output voltage, ADC properties

Digital Part

The Baseband functions are controlled by the MAD2PR1 asic, which consists of MCU, system logic and DSP, all integrated into one common asic.

MAD2PR1 system ASIC

MAD2PR1 contains following building blocks:

- ARM RISC processor with both 16–bit instruction set (THUMB mode) and 32–bit instruction set (ARM mode)
- TMS320C542 DSP core with peripheral:
 - API (Arm Port Interface memory) for MCU–DSP communication, DSP code down load, MCU interrupt handling vectors (in DSP RAM) and DSP booting
 - Serial port (connection to PCM)
 - Timer
 - DSP memory
- BUSC (BusController for controlling accesses from ARM to API, System Logic and MCU external memories, both 8– and 16–bit memories)
- System Logic
 - CTSI (Clock, Timing, Sleep and Interrupt control)
 - MCUIF (Interface to ARM via BusC). Contains MCU BootROM
 - DSPIF (Interface to DSP)
 - MFI (Interface to COBBA_GJP AD/DA Converters)
 - CODER (Block encoding/decoding and A51&A52 ciphering)

- AccIF(Accessory Interface)
- SCU (Synthesizer Control Unit for controlling 2 separate synthesizer)
- UIF (Keyboard interface, serial control interface for COBBA_GJP PCM Codec, LCD Driver and CCONT)
- UIF+ (roller/ slide handling)
- SIMI (SimCard interface with enhanced features)
- PUP (Parallel IO, USART)
- FLEXPOOL (DAS00308 FlexPool Specification)
- SERRFI (DAS00348 COBBA_GJP Specifications)

MAD Power Up Procedures

Because MAD2PR1 includes three functional units it is beneficial to describe also the MAD2PR1 internal power up behavior. It can be divided into two parts:

- 1. normal power up.
- 2. FLASH down loading power up

MAD2PR1 Normal Power Up

0. INITIAL CONDITIONS: POWER UP RESET (PURX) IS ACTIVE

- MAD2PR1 is in RESET mode
- FLASH prommer not connected

1. POWER UP RESET (PURX) RELEASED:

1.1 MAD2PR1 releases the MCU reset (MCUResetX) and the external system reset (ExtSysReset)

2. MCU BOOTS UP FROM SYSTEM LOGIC BOOT ROM:

2.1 MCU starts to read the boot code from system logic boot ROM 2.2 MCU checks if the FLASH prommer is connected (by studying the status of serial synchronous clock input at MBUS line)

2.3 **If** prommer not connected (MBUS not LOW) **then** continue this procedure,**else** go to MAD FLASH down loading power up procedure 2.4 MCU reads the system configuration data from FLASH memory 2.5 **If** system configuration data OK **then** continue this procedure,**else** jump to 4 (system configuration data not ok).

2.6 MCU disables boot ROM and switches to read code from FLASH memory

3. MAD2PR1 NORMAL POWER UP DONE AND MCU CONTINUES INITIALIZATION FROM FLASH MEMORY:

4. SYSTEM CONFIGURATION DATA NOT OK:

4.1 MCU aborts all program execution and drives the FBUS–TX line low (to indicate unsuccessful booting)

4.2 CCONT watchdog expires and the phone is turned off

MAD FLASH down loading power up

The FLASH down loading power up procedure is similar to that of DCT2. The only difference is that instead of external RAM the internal API RAM may be used to store the FLASH down loading program (if the down loading program fits into the API RAM it is stored there, if not then it is stored to external RAM). The procedure is described below.

0. INITIAL CONDITIONS: POWER UP RESET (PURX) IS ACTIVE – MAD2PR1 is in RESET mode

1. POWER UP RESET (PURX) RELEASED:

1.1 MAD2PR1 releases the MCU reset (MCUResetX) and the external system reset (ExtSysReset)

2. MCU BOOTS UP FROM SYSTEM LOGIC BOOT ROM:

2.1 MCU starts to read the boot code from system logic boot ROM 2.2 MCU checks if the FLASH prommer is connected (by studying the status of serial synchronous clock input at MBUS line)

2.3 **If** prommer connected (MBUS low) **then** continue this procedure,**else** go to normal MAD2PR1 power up procedure

2.4 MAD2PR1 acknowledges the presence of the prommer by setting the FBUS–TX line low

2.5 FLASH prommer sends the first two bytes of data to MCU which indicate the length of the secondary boot code

2.6 MCU acknowledges the reception of the secondary boot code length by setting the FBUS-TX line high

2.7 FLASH prommer loads the secondary boot code to API RAM using the serial syn chronous interface (PUP USART, FBUS–RX as data line and MBUS line as clock)

2.8 MCU acknowledges the reception of the secondary boot code by setting the FBUS-TX line low

3. MCU CONTINUES BOOTING FROM API BOOT CODE

3.1 MCU disables the system logic boot ROM

3.2 MCU starts to test the external RAM and sets the FBUS TX line high 3.3 If external RAM test is passed then MCU sets the FBUS TX line low, if failed the booting is interrupted

3.4 MCU reads the system configuration data from FLASH memory (two bytes)

3.5 MCU sends (parts of) the system configuration data to FLASH prommer

3.6 MCU sets the FBUS TX line high to indicate that it is ready to receive the FLASH programming SW (to either API RAM or external RAM) 3.7 FLASH prommer loads the FLASH programming SW to the RAM

4. MCU SWITCHES TO RUN THE CODE FROM THE FLASH PROGRAMMING SW

4.1 MCU initializes itself according to the FLASH programming SW

4.2 MCU sets the FBUS TX line low to indicate that it has successfully received the FLASH programming SW, has initialized itself correctly and it is ready to accept a command from FLASH prommer

After this power up procedure MCU receives commands from the FLASH programmer and acts accordingly using the FLASH loading SW either in the API RAM or the external RAM.

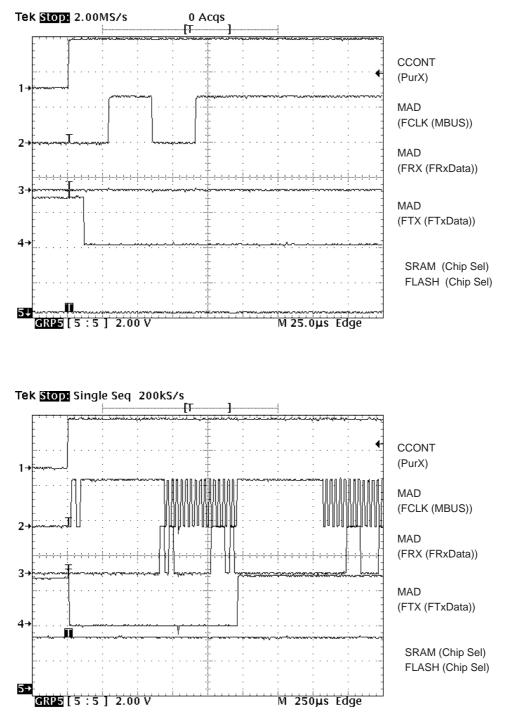


Figure 14. Flash Programming Sequence

Battery removal

SIMCardDetX input on MAD is a threshold detector with a nominal input switching level 0.85xVbb for a rising edge and 0.55xVbb for a falling edge. The battery removal detection is used as a trigger to power down the SIM card before the power is lost. V109a pulls SIMCardDetX high, telling the MAD to power down RF, SIM and Baseband, which takes about 2ms. Vbb is maintained for about 4ms by the energy stored in the switcher output capacitors, thus providing a sufficient delay between battery removal detection and supply power off.

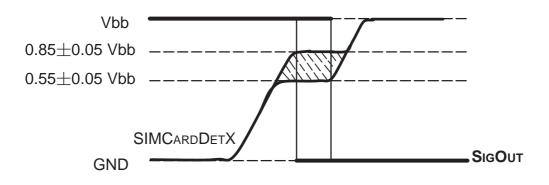


Figure 15. Sim Card DetX detection levels

If the battery pack is disconnect during the sleep mode, the CCONT pulls the SIM interface lines low as there is no time to wake up the MCU.

Memories

The program code resides in an external FLASH program memory. The DSP operates entirely from the internal MAD2PR1 memory, the DSP code is down loaded from the external Flash via the (API ram) interface in MAD2PR1. The MCU operates from the external Flash memory as well as from the external RAM memory. A serial EEPROM is used for storing the system and tuning parameters, user settings and selections etc.

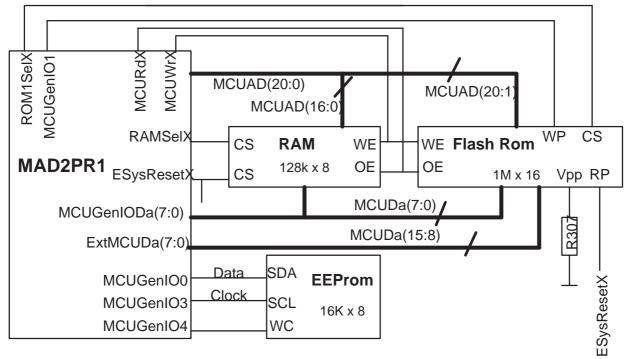


Figure 16. Memory Setup

Inside MAD2PR1 the memory interfacing is controlled by the BusController block, BusC, in the system logic. Based on signals from the MCU core the BusC generates chip selects for the address lines, number of wait states for memory access, and read write strobes. The BusController controls MCU access to the internal MAD2PR1 system logic memories

The HD947 MCU memory requirements are shown below

Table 31. HD947 Memory Requirements

Device	Organiza- tion	Ac- cess Time ns	Wait States Used	Remarks
FLASH	1024kx16	110	1	uBGA48
SRAM	128kx8	120	1	Shrink TSOP32
EEPROM	16kx8 serial			IIC SO8

SRAM Memory

The MCU work memory is a static ram of size **128kx8** in a **Shrink TSOP32** package. The work memory is supplied from the common Baseband VBB voltage and the memory contents are lost when the Baseband voltage is switched off. All retainable data should be stored into the EEPROM (or FLASH) when the phone is powered down.

MAD2PR1 interfaces to the RAM via a parallel memory bus which consists of 17 address lines, MCUAd(16:0) and 8 data lines, MCUDA(7:0) both shared with the Flash memory bus. Read and write strobes and two chip selects, one of which is the system reset.

EEPROM Memory

An EEPROM is used for a nonvolatile data memory to store the tuning parameters and phone setup information. The short code memory for storing user defined information is also implemented in the EEPROM. The EEPROM size used is 16Kbytes. The memory is accessed through a serial IIC bus and the default package is SO8.

FLASH Memory

The MCU program code resides in the program memory. The program memory size is 16 Mbits (1024kx16bit) in the **uBGA48** –package.

The flash memory has a power down pin that is kept low,by ESysResetX, during the power up phase of the flash to ensure that the device is powered up in the correct state, read only. The power down pin is utilized in the system sleep mode by connecting the ExtSysResetX to the flash power down pin to minimize the flash power consumption during the sleep.

MAD2PR1 interfaces to the Flash via a parallel memory bus which consists of 20 address lines, MCUAd(20:1) and 16 data lines, MCUDA(7:0) for LSB and MCUDA(15:8) for MSB. Read and write strobes and two chip selects, one of which is the system reset, ExtSysResetX.

The flash is HW protected against accidental writes by, R307, pull down on Vpp.

Flash Programming

The phone have to be connected to the flash loading adapter FLA–5 so that supply voltage for the phone and data transmission lines can be supplied from/to FLA–5. When FLA–5 switches supply voltage to the phone, the program execution starts from the BOOT ROM and the MCU investigates in the early start–up sequence if the flash prommer is connected.

System Module

Parameter	signal	min	typ	max	Unit	Comment
Normal phone operation	Vpp	0		1.0	V	HW protected against programming
	lpp leak			0.2	mA	Max allowed leakage current from Vpp pin on flash for safe write protection. Phone has 4k7 pull down resistor.
Aftersales programming TDS–7 & MJS–13	Vpp	1.65		3.6	V	Valid range to tell FLASH to use Vbb as programming supply
	lpp		0.05	0.1	mA	Programming current drawn from Vpp
	lbb		18	55	mA	Programming current drawn from Vbb
Production programming	Vpp	11.4		12.6	V	Programming current
"fast programming"	Ipp		8	22	mA	drawn from Vpp
	lbb		8	15	mA	Programming current drawn from Vbb

 Table 32. Flash programming, Vpp, properties

A 2.8V programming voltage is supplied from the Vbb, provided that Vpp is in range. Otherwise the fast programming voltage must be supplied to the pad, J105, in the service interface.

CCONT

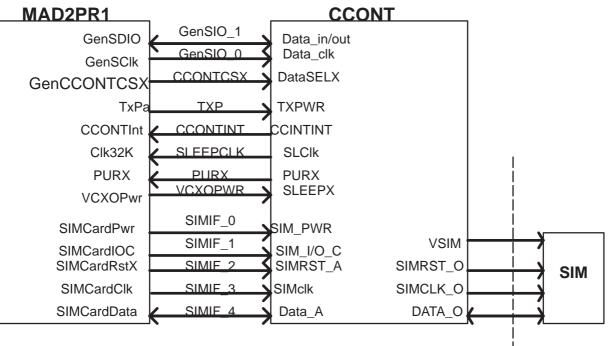
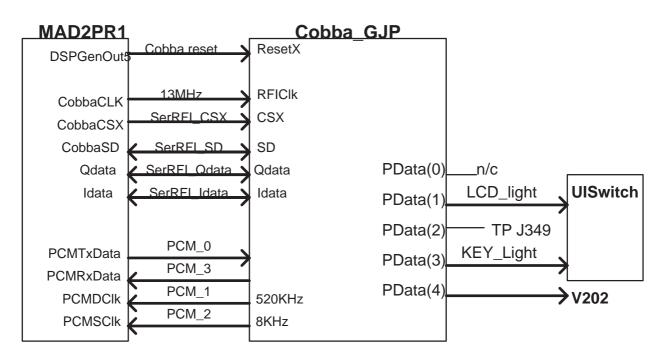


Figure 17. Digital Interface – CCONT and MAD2PR1

As opposed to DCT3 only two signals are used for direct regulator control:


- VCXOPwr to control VCTCXO supply On/Off
- SIMCardPwr to turn SIM card supply on/off

All other regulators are controlled via the serial control bus. Which is implemented with the 3 lines CCONTCSX for chip select, GenSIO_1 for data and GenSIO_0 for 1.083MHz clock. The bus is a general purpose bi–directional bus shared with the LCD–driver.

The CCONT ADC is controlled and measurements read out via the serial bus. The ADC conversion is synchronized to the TXP signal which indicates the Tx–burst.

When an event has occurred in the ccont , it creates an interrupt on CCONTINT line to the MAD2PR1, which serves it and reads the event register via the serial bus.

The SIM interface is made up of 3 lines, reset, clock and data which are fed to the SIM card via the CCONT. Additionally The SIMCardIOC signal controls the direction of the data line, LOW data to SIM card, High data from SIM card.

COBBA_GJP

Figure 18. Digital Interface – COBBA_GJP and MAD2PR1

The Cobba_GJP is a mixed signal IC including the Baseband RF analog interface and the Baseband audio PCM interface. The Cobba converts the down link audio PCM stream from the DSP to analog signals feeding the audio output transducers. The Coba converts the analog audio input from the microphone devices to an uplink PCM bit stream to be feed to the DSP for further processing. The MAD a separate pin for resetting the Cobba.

There are two separate busses between the Cobba and the MAD2PR1:

- The SerRFI bus which is used to control the COBBA device and for transferring the data to and from the RF. The bus is implemented with 5 lines
- The PCM interface that transfers the PCM coded voice data to and from the audio CODEC part of the Cobba. The bus contains receive- and transmit-data, frame synchronization (8KHz) which indicates the rate of the PCM samples, and the clock (520 KHz). The cobba is generating both clocks from the 13MHz signal delivered from the MAD.

PData (0 - 4) are logical output ports on the Cobba, controlled by the DSP. The MCU can control the pins by a MDI message sent to the DSP (all inside the MAD). The pins are used to:

- interfaces to the UI Switch, with two enable signals for the keyboard and display back light drivers
- drive the Mute transistor V202 for the external audio PPH-1 Unit
- connection to a test pad J349, SW request for in field debugging possibility

Audio

The Cobba audio interface includes:

- 3 differential microphone inputs (MIC1,MIC2, MIC3). MIC1 and MIC 3 are connected together and to the bottom connector for handsfree (MIC1) and headset (MIC3) use. MIC2 is for the internal microphone.
- two differential audio outputs EAR for internal earpiece, and HF/HFCM for external audio output
- MBias which are used for bias supply for the internal microphone
- Auxout (0V; 1.5V ; 2.1 V or high impedance) are used for bias supply for the headset microphone, or control voltage for accessory identification

The audio paths and the voltage of Auxout and MBias are selected with control bits in the audio control register inside Cobba

Internal Audio

Microphone, uplink audio:

1.

The internal uplink audio circuitry consists of basically 5 blocks:

- The microphone device: Which converts air pressure variations to current variations. The internal microphone is placed in a well in the bottom connector part, it's connected to the bottom connector by means of mounting springs for automatic assembly.
- The microphone bias circuitry: MBIAS from Cobba generates a 2.1V dc suppply, which is filtered by R214 and C220 for better TDMA suppression. R215 and R216 converts the current variations created by the microphone to a voltage variation.
- 3. Filtering:

The microphone signal are filtered by the second order high pass filter (made by R219, R220, C226,C229,R230,C258,C259 and the input impedance of the Cobba MIC2 port) to suppress low frequency noise, especially from car environment (since the internal mic is used for Handsfree unit PPH–1)

4. Conversion:

The Cobba GJP ASIC converts the analog audio signal to a PCM bitstream which is supplied to the DSP for further speech processing

5. EMC protection:

The microphone unit are equipped with two internal capacitors for removal of RF noise generated by the phones own PA via the antenna and demodulated by the FET inside the mic device. Additional 27pF capacitors are inserted to remove GSM signals coupled to the mic wires in the PCB from the bottom connector to the Cobba input. EDS protection are made up by V200.

Parameter	min	typ	max	Unit	Comment
Mic Bias current	100		500	uA	Max supply by the cobba
Microphone sensitivity	-2	42	+2	dB	0dB = 1V/Pa @ 1kHz
Internal cobba gain		18		dB	set by MCU SW in cobba regis- ter
total internal cobba gain	-0.5	38	+0.5	dB	300 < f <3400 Hz
Signal level at cobba MiC2P/N input			25	mV	300 < f <3400 Hz, to not satu- rate the Cobba input stage with Cobba gain (MCU value) 18 dB below 200mV
BB HP filter f_6dB		135		Hz	
Internal Cobba HP filter		En- abled			

Table 33. Internal uplink audio Baseband specifications

Earphone, down link audio:

The internal down link audio circuitry consists of basically 3 blocks:

- 1. The cobba ASIC: Which converts the PCM bitstream from the speech processor in the DSP to analog signals which are feed to the earpiece.
- 2. The earpiece unit:

Which converts the voltage variations to air pressure variations (sound). The low impedance (32 ohm), dynamic type internal earphone is connected to the PCB by means of mounting springs for automatic assembly.

3. EMC suppression:

L202 and L203 prevents the RF radiated by the antenna from getting demodulated in by the earpiece in the low impedance output of the Cobba. Additionally are added 27pF capacitors to remove GSM signals coupled to the earpiece wires in the PCB from the cobba output to the earpiece unit.

Parameter	min	typ	max	Unit	Comment
Earphone sensitivity	-3	103	+3	dB	@1mW at 1KHz
Internal cobba gain		-10		dB	set by MCU SW in cobba regis- ter
total internal cobba gain	-0.5	-10	+0.5	dB	300 < f <3000 Hz

Table 34. Internal downlink audio E	Baseband specifications
-------------------------------------	-------------------------

Key press and user function response beeps are generated with the earpiece.

External Audio

The external audio of NSE–8/9 is designed only for support of the Janette Accessory program units:

- PPH-1 Carkit with and without external microphone HFM-8
- HDC–5 button headset

The PPH–1 uses Cobba input MIC1 since to output from PPH–1 is higher there is less gain in the NSE–8/9 Baseband. HDC–5 uses MIC3, since the headset microphone generates a weaker signal there is need for higher amplification in the NSE–8/9 Baseband.

Uplink signal path

The uplink audio circuitry consists of basically 7 blocks:

- 1. Input from the external device
 - 1..a The HDC–5 microphone device: Which is connected by cable directly to the bottom connector X503. It converts air pressure variations to current variations.
 - 1..b The PPH–1 output is a well conditioned analog voltage connected by cable directly to the bottom connector X503, if HFM–8 is used. If HFM–8 is not used the uplink audio is handled by internal microphone of NSE–8/9
- 2. DC circuitry:
 - 2..a The HDC–5 microphone bias circuitry: AUXOUT from Cobba generates a 2.1V dc suppply, which is filtered by R205 and C206 for better TDMA suppression. R206, R231 and R232 converts the current variations created by the microphone to a voltage variation.
 - 2..b In PPH–1 conversation the DC circuitry plays no important role. AUXOUT from Cobba generates 0V. The DC levels are determined by the PPH–1 unit.
- 3. Filtering:
 - 3..a With PPH–1 with HFM–8 the uplink signal is filtered by the first order high pass filter (made by R217, R218, C207,C210, the input impedance of the Cobba MIC1 port) to suppress low frequency noise, especially from car environment.
 - 3..b With HDC–5 the uplink signal is filtered through the same stages as 3..a with an additional HP filter (made by C208, C213 and the input impedance of the Cobba MIC3 port) to suppress low frequency noise, especially from car environment even further. The usage of the input impedances from the not used Cobba stages is possible since they are biased no matter which input is used.

4. Conversion:

The Cobba GJP ASIC converts the analog audio signal to a PCM bitstream which is supplied to the DSP for further speech processing. The selection between which inputs to use is handled by the MCU through control registers inside Cobba

5. EMC protection:

The Low pass filter mad by R231, C257 and R232, C256 improves the immunity towards high frequency signals picked up by the audio accessory cable. C209 makes the GSM burst signal level picked up by the cable to common mode signals on the input, which are very well suppressed by the differential amplifier in the cobba, if it's not attenuated by the LP filter made by R218, C215 and R217, C216 to suppress the remaining HF signals.

ESD protection is made by V207 and R231, R232.

6. HDC–5 HOOK detect:

The transistor V202 (pins 2,3,4) makes together with R212, R225 and R226 a simple level converter, to condition the Hook signal (generated in the HDC–5 by shorting the mic terminal) to the valid input range of the MAD2PR1 HookDet input. In the sw is implemented a delay in order not to generate un intended Hook signals due to hook switch bouncing or blowing in the HDC–5 microphone. Hook signal is not implemented in PPH–1.

7. PPH–1 mute:

Since the pull–down in AUXOUT is app. 5Kohm when AUXOUT is set to 0 volt V202 (pins 1,5,6) is used to pull down the dc–level when activated by PData(4) from Cobba. This is used to signal to the PPH–1 unit to mute it's up– and downlink– signals.

Down link signal path

The external down link audio circuitry consists of basically 3 blocks:

- 1. The cobba ASIC: Which converts the PCM bitstream from the speech processor in the DSP to analog signals.
- The DC separation: C201 and C203 separates the DC bias levels needed by the Cobba output stage from the external audio dc–levels. R227 and R228 is used to separate the capacitive load of the EMC filter capacitors from the output stage of the Cobba in order not to cause instability.
- 3. EMC suppression:

L200 and L201 prevents the RF radiated by the antenna or pickled up by the accessory cable from getting demodulated by the HDC–5 earpiece in the low impedance output of the Cobba. Together with C235 and C236 the filter improves the immunity of the accessory cable towards CE related test signals. Additionally are added 27pF capacitors to remove GSM signals coupled to the wires in the PCB from the cobba output to the bottom connector. ESD protection is made by V207

Audio accessory detection

When a jack is plugged into the bottom connector X503 it activates the bottom connector switch, thus opens the connection between R200 and R202 which will make HEADDET pin on MAD go high indicating an interrupt to the SW. When no accessory is present the switch inside the bottom connector X503 is closed and HEADDET is pulled low by R202.

When SW has acknowledged the interrupt it starts a sequence of commanding the AUXOUT voltage of the Cobba to different levels while reading the voltage at EAD (by way of the EAD ADC in CCONT. When the PPH–1 unit is connected the sw even stops the charger current from flowing in order not to make it offset the level measured during the identification, due to charge gnd. being the only common dc reference.

For a full description of the audio accessory detection including detection levels.

System Module

UI

The UISWITCH IC is an integrated switch IC for UI purposes. It includes control switches for buzzer–, vibra–, LED– (display & keyboard) control and two current sinks for LED's.

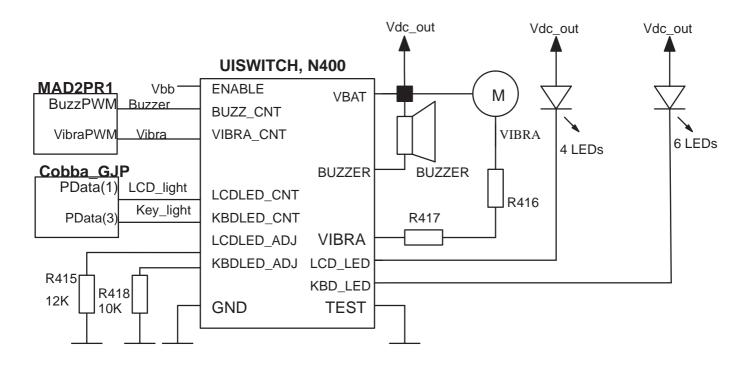


Figure 19. UI Switch & Transducers

Parameter	Pin	Symbol	Min	Тур	Max	Unit		
CONTROL	LCDLED_CNT	VIL	0		0.5	V		
input voltage	KBDLED_CNT BUZZ_CNT VIBRA CNT	VIH	2.0	Vbb	Vbbma x	V		
Internal pull-down resistor	_	Rpd	60	100	180	kΩ		
LCD LED ADJUSTMENT	LCDLED_ADJ	Radj.	-5%	12	+5%	kΩ		
max. 60mA sink current	LCD light current	ILCD		50		mA		
KBD LED ADJUSTMENT	KBDLED_ADJ	Radj.	-5%	10	+5%	kΩ		
max. 60mA sink current	Keyboard light current	lkbd		60		mA		
BUZZER average current @ 50% duty cycle @ VBAT = 3.6V Rbuzzer (typ.) = 16Ω Series inductance = 0.5mH	BUZZER	lbuzz		110		mA		

Table 35. Input and output characteristics of the	UISwitch IC
---	-------------

Parameter	Pin	Symbol	Min	Тур	Max	Unit
Buzzer FET switch Rdson	BUZZER				1	Ω
VIBRA nominal current @ VBAT = 3.6V Rvibra (typ.) = 10Ω	VIBRA	lvibra		120		mA
VIBRA FET switch Rdson	VIBRA				1	Ω

Table 35. Input and output characteristics of the UISwitch IC (continued)

For a complete specification of the UISwitch IC.

Backlight

4 LEDs are used for **LCD back lighting**. They are controlled by the signal LCD_light coming from the Cobba_GJP. When LCD_light is HIGH, lights are ON and when LCD_light is LOW, lights are OFF. Default state for LCDLED_CNT pin is LOW (internal pull-down resistor).

The UISWITCH has an adjustable constant current sink for the pin LCD_LED. The current can be adjusted by means of an external resistor connected to adjustment pin LCDLED_ADJ. The typical LCD backlight current is 50 mA with R415 of $12k\Omega$. LCD backlight current can be reduced linearly by increasing the value of adjustment resistor in LCDLED_ADJ line.

6 LEDs are used for **keyboard back light**. They are controlled by the signal Key_light from Cobba_GJP. When Key_light is HIGH, lights are ON and when Key_light is LOW, lights are OFF. Default state for Ulswitch KBDLED_CNT pin is LOW (internal pull-down resistor).

The UISWITCH has an adjustable constant current sink for the pin KBD_LED. The current can be adjusted by means of an external resistor connected to adjustment pin KBDLED_ADJ. The typical keyboard backlight current is 60 mA with R418 of 10 k Ω . Keyboard backlight current can be reduced linearly by increasing the value of adjustment resistor in KBDLED_ADJ line.

Buzzer

A buzzer is used for giving alerting tones and/or melodies as a signal of an incoming call. The buzzer is controlled with a PWM output signal, BUZZER from the MAD2PR1. A dynamic type of buzzer is used since the supply voltage available can not produce the required sound pressure for a piezo type buzzer. The alert volume can be adjusted either by changing the pulse width causing the level to change or by changing the frequency to utilize the resonance frequency range of the buzzer.

Each time the buzzer is activated the sw commands the DC/DC converter output to max level to have the highest voltage swing available for the buzzer.

When the signal, BUZZER, is high, current runs through the buzzer, and when it's low no current flow. The BUZZ_CNT pin is has an internal pull–down resistor.

UISWITCH has a low on–resistance FET switch for the buzzer (pin BUZZER) and an internal protection diode.

Vibra, NSE–9 only

A vibra alerting device is used for giving silent signal to the user of an incoming call. The device is controlled with by a PWM signal, VIBRA, which is supplied by MAD2PR1. The vibra alert can be adjusted either by changing the pulse width or by changing the pulse frequency. The vibra device is inside the phone.

Each time the vibra is activated the sw commands the DC/DC converter output to max level to have the highest voltage swing available for the vibra.

When the signal , VIBRA, is high, current runs through the vibra, and when it's low no current flow. The VIBRA_CNT pin is has an internal pull–down resistor.

The UISWITCH has a low on–resistance FET switch for the vibra (pin VIBRA) and a internal protection diode.

LCD

The LCD module for NSE–8/9 consists of a 84 by 48 dot matrix display with a driver chip on the display glass. The driver has an internal free running clock oscillator used for the logic inside the driver as well as for the display frame frequency. The oscillator frequency is 16.3 KHz and the frame frequency is 80 Hz.

The display driver has an internal voltage tripler circuitry for generation of a negative supply rail required for operation of the liquid crystal material. Capacitor C401 is used by this voltage booster.

R420 and R421 are used for improved ESD protection, thus preventing the display from resetting, when ESD is applied to the display frame etc.

The display is connected to the system board via a Zebra connector X400.

Besides the supply voltage, Vbb, GND and external capacitor connection, C401, the interface consists of a 5 wire write only serial interface:

- LCDRSTX reset signal from MAD2PR1 (MCUGenIO2) which is protected against un intended resets by R421 and R420, caused by ESD on the display frame.
- LCDEN chip enable from MAD2PR1 (LCDCSX)
- LCDCD Command/Data signal from MAD2PR1

- GenSIO_0: Serial data clock, 1.083 MHz from MAD2PR1 (GenSClk)
- GenSIO_1: Serial Data from MAD2PR1 (GenSDIO),

Data is read on the rising edge of the clock. On every eight clock pulse, the data is transferred from the shift register and processed as 8–bit parallel data. LCDCD is read on the rising edge of every eight clock signal.

Keyboard

Keypad switch matrix

The keypad consists of a matrix of 16 switches, $(0 - 9, \#, *, Clear, Previous (<math>\nabla$), NEXT (\triangle) and SOFT-A (**Navi-key**)). These are the references on the schematics. Bold indicates the keyboard functionality, which is determined by software.

The keypad keys are connected in a 4 by 4 matrix. The 4 columns (outputs) are normally held logic low by the MAD2PR1. The 4 rows (inputs) are connected to the MAD2PR1 – when any of these inputs goes low (there are pull–ups inside the MAD2PR1) the MAD2PR1 interrupts the MCU, which then commences scanning. This involves taking all the columns high then taking each individual column low in turn. When a low is received on a row input, it can be deduced, which key is pressed from the row input number and the column output, which is currently low.

Name	Property	Min	Тур	Мах	Unit	Notes
COL (3:0)	VoL	0	Logic Low	0.5	V	Keyboard matrix col-
	VoH	2.1	Logic High	Vbb	V	umns
ROW (4:1)	ViL	0	Logic Low	0.6	V	Keyboard
	ViH	2.0	Logic High	Vbb	V	matrix rows

 Table 36. Keyboard matrix signal levels

The keypad consists of gold flashed PCB tracks above which are placed metal keydomes.

The ROW inputs on the MAD are protected against ESD by V301 since rows are the outer ring of the pcb pads.

The power key, S416, is connected through R413 to the CCONT via the line 'PWRON' and to 'ROW0' trough the diode V410 and R423. When activated both lines are pulled low.

When the key is pressed, row0 will go low, but the value of row0 will not be changed when the column outputs are set high at the start of the scanning process. This fact uniquely identifies the key. A diode is necessary to protect the MAD2PR1 against the pull up of "PWRON" to Vdc_out inside CCONT.

R423 is used for ESD suppression of discharges on the power on key, before reaching the MAD input.

RF

The RF module converts the signal received by the antenna to a baseband signal and vice versa.

It consists of a conventional superheterodyne receiver and a transmitter for each band and also two frequency synthesizers for the required mixing.

The architecture contains two integrated circuits, a CRFU3_D1 and a SUMMA. They are both BiCMOS ASICs, which is a suitable technology for integration of RF functions.

The CFRU3 includes:

- A LNA for each band with a step AGC
- Down converters for the receiver
- Image rejection upconversion mixers for the transmitter
- A prescaler for the 2 UHF VCO
- The SUMMA includes:
- An AGC amplifier for the receiver
- A receiver mixer for the 13 MHz down conversion
- PLLs for the UHF and VHF synthesizers
- IQ-modulators for the transmitter
- A power control circuit for the transmitter

The power amplifiers (PAs) are MMIC technology (Monolithic Microwave Integrated Circuit). They include three amplifier stages with input, interstage and output matching.

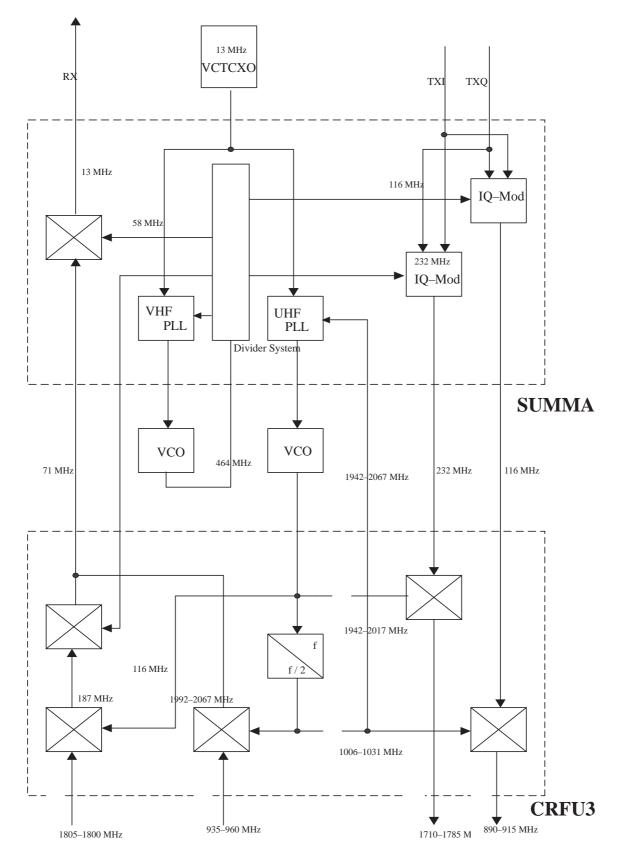


Figure 20. RF Frequency Plan

DC Regulators

The transceiver has a multi function power management IC, which contains among other functions 7 pcs of 2.8 V regulators. All regulators can be controlled individually with 2.8 V logic directly or through a control register. However, in the chosen configuration of the CCONT, direct control is only used with VR1. The control register is used to switch off the regulators when they are not in use.

The CCONT also provides a 1.5 V reference voltage for the SUMMA. This reference voltage is used for the DACs and ADCs in the COBBA too.

The use of the regulators can be seen in the Power Distribution Diagram.

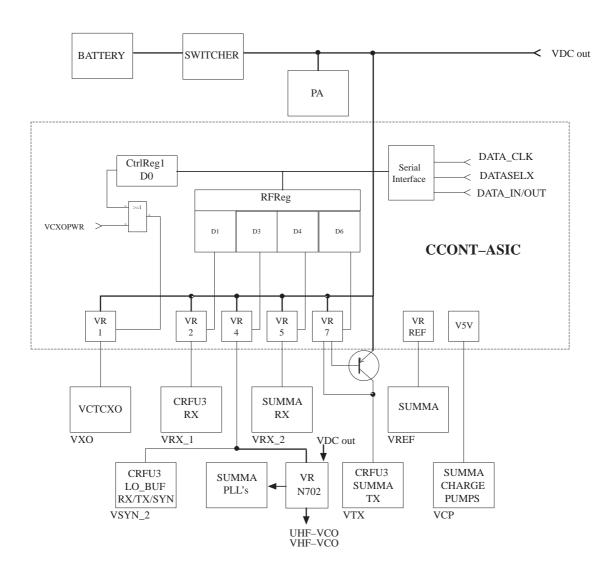


Figure 21. Power Distribution Diagram

Frequency Synthesizers

Both the UHF- and the VHF-VCO are locked with PLLs to a stable frequency source, which is a VCTCXO-module (Voltage Controlled Temperature Compensated Crystal Oscillator). The VCTCXO is running at 13 MHz and is locked to the frequency of the base station by means of an AFC (Automatic Frequency Control).

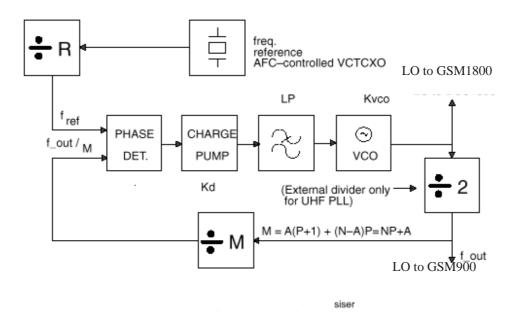


Figure 22. Frequency Synthesiser– Block Diagram

The UHF PLL is common for both systems and is located in the SUMMA except for an external UHF–VCO. The part in the SUMMA includes a 64/65 (P/P+1) prescaler, a N- and A-divider, a reference divider, a phase detector and a charge pump for the external loop filter. The UHF–VCO is running at 2 GHz. The UHF local oscillator signal is generated by first dividing the UHF-VCO signal by two in the CRFU3 prescaler. After that the signal is fed to the SUMMA prescaler. The latter prescaler is a dual modulus divider. The output of the prescaler is fed to N- and A-divider, which produce the input to the phase detector. The phase detector compares this signal to the reference signal, which is derived by dividing the output from the VCTCXO.

The output of the phase detector is connected to the charge pump, which charges or discharges the integrator capacitor in the loop filter in accordance with the phase difference between the measured frequency and the reference frequency. The loop filter serves to filter the voltage across the integrator capacitor and generates a DC voltage that controls the frequency of UHF-VCO. The loop filter defines the step response of the PLL (settling time) and effects the stability of the loop.

To preserve the stability of the loop a resistor is included for phase compensation. Other filter components are for sideband rejection.

The dividers are controlled via the serial bus. SDATA is for data, SCLK is the serial clock for the bus and SENA1 is a latch enable, which enables storing of new data into the dividers. The UHF-synthesizer is the channel synthesizer, so each step equals the channel spacing (200 kHz). When GSM900 operation is active, a 200 kHz reference frequency is used for the phase detector. For GSM1800 operation, a 100 kHz reference frequency has to be used.

This is because the GSM1800 UHF parts use a 2GHz LO–signal, but the UHF synthesizer is locked to a 1GHz LO–signal, which is derived by dividing the 2GHz LO–signal by two.

Except for the VHF–VCO the VHF PLL is located in the SUMMA. It is common for both systems like the UHF PLL. The part in the SUMMA includes a 16/17 (P/P+1) dual modulus prescaler, an N- and A-dividers, a reference divider, a phase detector and a charge pump for the loop filter. The VHF–VCO is running at 464MHz. The operation of the VHF PLL is identical to that of the UHF PLL, except for the use of the prescaler in the CRFU3. The used reference frequency is 333kHz.

Receiver

The receiver is a conventional dual conversion for GSM900 and triple conversion for GSM1800. Both receivers use upper side LO injection in the first RF mixer, after that lower side LO injection is used. Because of this there is no need for changing I/Q phasing in baseband when receiving band is changed between GSM1800 and GSM900. The two receiver chains are combined in 71 MHz IF so that they use the same RX chain from that point down to 13MHz AD converter. Because there is only used one external antenna connector, common for both bands, a dualband diplexer that has one common antenna input/output is used. The selection between GSM900 and GSM1800 operation modes in the CRFU3 is done with the band selection signal (BAND_SEL) from the MAD in baseband.

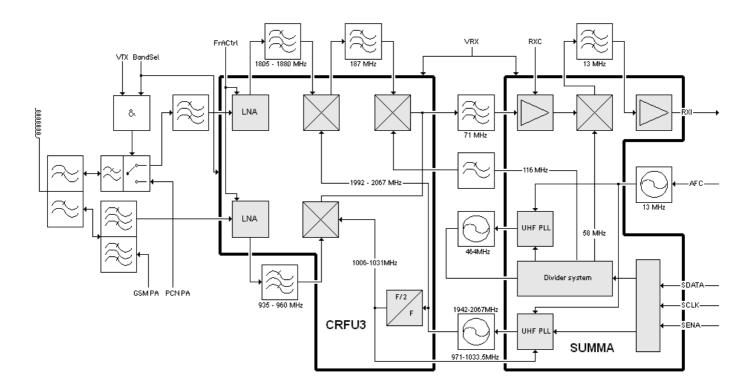


Figure 23. Receiver Block Diagram

GSM900 Front–End

The GSM900 receiver is a dual conversion linear receiver. The front–end, which is located in the CRFU3 RF-, is activated with the band-selection signal (BAND_SEL) set to high-state. The received RF-signal from the antenna is fed via the diplex filter and the duplex filter to the LNA (Low Noise Amplifier) in the CRFU3. The active parts (RF-transistor and biasing and AGC-step circuitry) are integrated into this chip. Input and output matching networks are external. The Gain selection is done with the FRACTRL signal. The gain step in the LNA is activated when the RF-level at the antenna is about -47 dBm. After the LNA, the amplified signal (with low noise level) is fed to the bandpass filter, which is a SAW-filter (Surface Acoustic Wave). The duplex filter and the RX interstage bandpass filters together define how good the blocking characteristics are.

The bandpass filtered signal is then mixed down to 71 MHz, which is the first GSM900 intermediate frequency. The first mixer is located in the CRFU3 and upper side injection is used for the down mixing. The integrated mixer is a double balanced Gilbert cell. It is driven balanced. All active parts and biasing are integrated. Matching components are external. Because it is an active mixer it also amplifies the IF-signal. Buffering of the local signal is integrated too. The first local signal is generated by the UHF-synthesizer.

GSM1800 Front–End

The GSM1800 receiver is a triple conversion linear receiver. The received RF-signal from the antenna is fed via the diplex filter, the RX–TX switch and the first RX SAW filter to the LNA in CRFU3. The RX–TX switch is controlled by the band selection signal (BAND_SEL = low) and the supply voltage for the transmitter part (VTX = low). VTX ensures that the switch can not turn to transmit position when the transceiver is in receive mode. The front–end in the CRFU3 is activated with band-selection signal (BAND_SEL) set to low-state. The active parts (RF-transistor and biasing and AGC-step circuitry) are integrated in this chip. The input and output matching networks are external. The gain selection is done with the FRACTRL signal. The gain step in the LNA is activated when the RF-level at the antenna is about -47 dBm. After the LNA, the amplified signal (with low noise level) is fed to the second RX–SAW bandpass filter. The two RX–SAW bandpass filters together define how good the blocking characteristics are.

The bandpass filtered signal is then mixed down to 187 MHz IF, which is the first GSM1800 intermediate frequency. The first mixer is located in the CRFU3 and upper side injection is used for the down mixing. The integrated mixer is a double balanced Gilbert cell. It is driven balanced. All active parts and biasing are integrated. Matching components are external. Because it is an active mixer it also amplifies the IF-signal. Buffering of the local signal is integrated too. The first local signal is generated by the VHF-synthesizer.

There is a balanced discrete LC-bandpass filter in the output of the first mixer which e.g. attenuates the critical spurious frequencies 161 MHz and 277 MHz and also the 151,5 MHz half-IF. It also matches the impedance of 187MHz output to the input of the following stage. After this filter, the 187MHz IF-signal is mixed down to 71MHz IF, which is the second GSM1800 IF. The VHF-mixer is also a double balanced Gilbert cell and is located into the CRFU3. Lower side injection of the LO signal is used for this down conversion.

The 116MHz LO signal comes from the SUMMA-, where it is derived by dividing the 464MHz VHFLO signal by four. There is an external lowpass filter for the 116MHz LO signal that attenuates the harmonics (especially 232MHz) so that the critical mixing spurious will be attenuated.

Common Receiver parts for GSM900 and GSM1800

After the down conversions in the CRFU3– the RX-signal path is common for both systems. The 71MHz IF-signal is bandpass filtered with a selective SAW-filter. From the output of to IF-circuit input of the SUMMA, signal path is balanced. IF-filter provides selectivity for channels greater than +/-200 kHz. Also it attenuates image frequency of the following mixer and intermodulating signals. Selectivity is required in this place, because of needed linearity and without filtering adjacent channel interferes would be on too high signal level for the stages following. Next stage in the receiver chain is an AGC-amplifier. It is integrated into the SUMMA. The AGC gain control is analog. The control voltage for the AGC is generated with a DA-converter in the COBBA in baseband. The AGC-stage provides an accurate gain control range (min. 57 dB) for the receiver. After the AGC-stage, the 71MHz IF-signal is mixed down to 13MHz. The needed 58MHz LO signal is generated in the SUMMA by dividing the VHF-synthesizer output (464 MHz) by eight.

The following IF-filter is a ceramic bandpass filter. It attenuates the signals in the adjacent channels, except for those separated +/- 200 kHz relative to the carrier. Very little attenuation is achieved for those signals in the filter, but they are filtered digitally by the baseband. Because of this the RX DACs has to be so good, that there is enough dynamic range for the faded 200 kHz interferers. The whole RX has to be able to handle signal levels in a linear way too. After the 13 MHz filter there is a buffer for the IF-signal, which also converts and amplifies the single–ended signal from filter to a balanced signal for the buffer and AD-converters in the COBBA. The Buffer in the SUMMA has a voltage gain of 36 dB and the buffer gain setting in the COBBA is 0 dB. It is possible to set the gainstep (95 dB) in the COBBA via the control bus, if needed.

System Module

Transmitter

The transmitter consists of an IQ-modulator that is common for the GSM900 and the GSM1800 chain, two image rejection upconversion mixers, two power amplifiers and a power control loop.

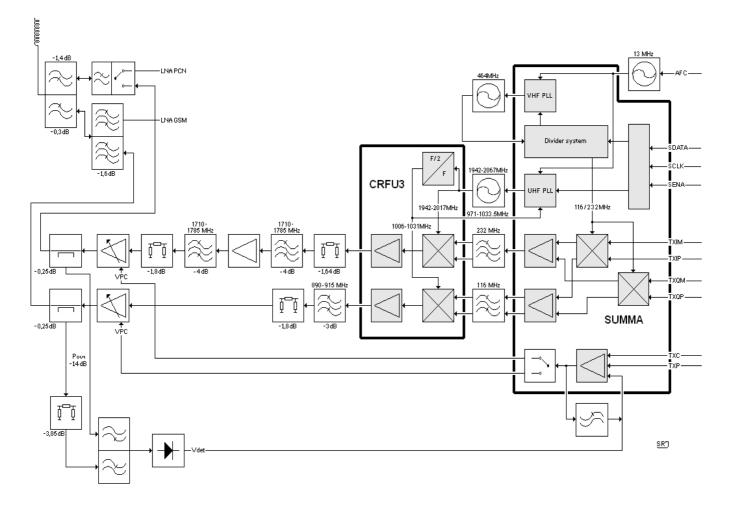


Figure 24. Transmitter Block Diagram

Common Transmitter Part

The I- and Q-signals are generated by the COBBA in baseband. After the post filtering (RC-network) they are fed into the IQ-modulator in the SUMMA.

GSM900 Transmitter

The IQ–modulator generates a modulated TX IF-signal centered at 116 MHz, which is the VHF-synthesizer output divided by four. The TX-amplifier in the SUMMA has two selectable gain levels. The output, which is balanced, is set to maximum via a control register in the SUMMA. After the SUMMA there is a bandpass LC-filter for reduction of noise and harmonics before the signal is upconverted to the final TX-frequency. Both the input and output of the bandpass LC-filter are balanced. The upconversion mixer, which is located in the CRFU3, is a so–called image rejection mixer. It is able to attenuate unwanted frequency components in the upconverter output. The mixer type is a double balanced Gilbert cell. The phase shifters required for image rejection are also integrated. The local oscillator signal needed for the upconversion, is generated by the UHF-synthesizer, but buffers for the mixer are integrated in the CRFU3. The output of the upconverter is single–ended and requires an external matching.

The next stage is the TX interstage filter, which attenuates unwanted frequency components from the upconverter further. These unwanted component mainly originates from LO-leakage and insufficient suppression of the image frequency in the upconversion. The interstage filter attenuates wideband noise too. The filter is a bandpass SAW-filter.

Between the interstage filter and the GSM900 PA an attenuator is placed. The attenuator ensures both stability of the GSM900 PA because of konstant 50 on the PA input and the right input level.

After the attenuator, the TX-signal is fed to the input of the GSM900 PA, which is a MMIC consisting of three amplifier stages and an interstage matching. It has a 50 input and output impedance. The gain control is integrated in the PA and is controlled with a power control loop circuit. The PA has more than 35 dB power gain and the maximum output power is approx. 35 dBm at an input level of 0 dBm. The gain control range is over 35 dB to ensure the desired power levels and power ramping up and down. The harmonics generated by the nonlinear PA (class AB) are filtered out with the duplexer.

After the duplexer the signal is fed to the diplexer. There is a directional coupler connected between the PA output and the duplex filter input to provide feedback for the power loop.

GSM1800 Transmitter

The IQ-modulator generates a modulated TX IF-signal centered at 232 MHz, which is the VHF-synthesizer output divided by two. The TX-amplifier in the SUMMA has two selectable gain levels. The output (single-ended) is set to maximum via a control register in the SUMMA. After the SUMMA there is a SAW filter for reduction of noise and harmonics before the signal is fed for upconversion into the final TX-frequency in the CRFU3. The input of the SAW filter is single ended but the output is balanced. The upconversion mixer for GSM1800 is an image rejection mixer as well as the one for GSM900. The local oscillator signal needed in the upconversion is generated by the UHF-synthesizer. Buffers for the mixer are integrated into the CRFU3. The output of the upconverter is single ended and requires external matching to 50 impedance.

Then the GSM1800 TX signal passes through the first attenuator in the GSM1800 TX chain. This attenuator ensures the right input level to the buffer, also called pre–amplifier, which will be mentioned later.

The next stage is the first TX interstage filter, which attenuates unwanted frequency components from the upconverter. These unwanted component mainly originates from LO-leakage and insufficient suppression of the image frequency in the upconversion. The interstage filter attenuates wideband noise too. The filter is a bandpass SAW-filter.

To ensure enough power gain in the GSM1800 TX chain the TX signal then passes through the buffer (pre amplifier). The buffer is driven into saturation to compensate for variations in CRFU3 output level and ripple in the first TX interstage filter and to ensure constant input level at the GSM1800 PA.

The next stage is the second TX interstage filter, which attenuates unwanted frequency components from the buffer. The interstage filter also attenuates wideband noise. Both interstage filters is the same type of bandpass SAW-filter.

Between the second interstage filter and the GSM1800 PA the second attenuator is placed. The attenuator ensures both stability of the PA because of konstant 50 on the PA input and the right input level.

After the second attenuator in the GSM1800 TX chain, the TX–signal is fed into the input of the GSM1800 PA. The GSM1800 PA contains three amplifier stages, interstage, input and output matchings. The PA has more than 33 dB power gain and the maximum output power is approx. 33 dBm at an input level of 0 dBm. The gain control range is over 35 dB to get the desired power levels and power ramping up and down.

The GSM1800 transmitter has no duplexer, but a TX/RX switch instead. This is due to space limitations.

After the TX/RX switch the signal is fed to the diplexer. The TX/RX switch is set to transmit position with BAND_SEL = low and VTX = high. There is a directional coupler connected between the PA output and the input of the TX/RX switch to provide feedback for the power loop.

Transmitter Power Control for GSM900 and GSM1800

The power control circuit consists of the gain control stage of the PA, a power detector at the PA output and an error amplifier in the SUMMA. There is a directional coupler connected after the PA output in both chains, but the power sensing line and detector are common for both bands. The GSM900 feedback signal is attenuated to the same level as the GSM1800 feedback signal. The combining of the two feedback signals is achieved with a diplexer. A sample is taken from the forward going power. This signal is rectified with a schottky-diode and after RC-filtering a DC-voltage is available. The DC–voltage reflects the output power. This power detector is linear on absolute scale, with the exception that it saturates on very low and high power levels, i.e. it forms an S-shaped curve.

The detected voltage is compared in the error-amplifier in the SUMMA to the TX power control voltage (TXC), which is generated by the DA-converter in the COBBA. The output of the error amplifier is fed to the gain control input of the PA. Because the gain control characteristics in the PA are linear in absolute scale, the control loop defines a voltage loop, when closed. The closed loop tracks the TXC-voltage. The shape of the TXC–voltage as function of time has a raised cosine form (cos4 - function). This shape reduces the switching transients, when the power is pulsed up and down.

Because the dynamic range of the detector is not wide enough to control the power (actually RF output voltage) over the whole range, there is a control signal named TXP (TX power enable) to work under detected levels. The burst is enabled and set to rise with TXP until the output level is high enough for the feedback loop to work. The loop controls the output power via the control pin on the PA to the desired output level.

Because the feedback loop could be unstable, it is compensated with a dominating pole. This pole decreases the gain on higher frequencies to get the phase margins high enough.

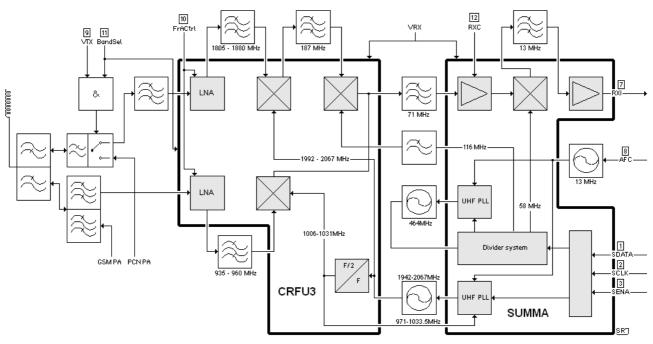
AGC

The purpose of the AGC-amplifier is to maintain a constant output level from the receiver. To accomplish this, pre-monitoring is used. This pre-monitoring is done in three phases and determines the settling time for the RX AGC. The receiver is switched on approximately 150 s before the burst begins and DSP measures the received signal level. The DSP then adjusts the AGC-DAC in accordance with the measured signal level and/or switches on/off the LNA with the front–end amplifier control line (FRACTRL). The AGC amplifier has a 57 dB continuos controllable gain (–17 dB to 40 dB) while the gain control of the LNA has two steps. That is the gain in the LNA is either –16 dB or 15 dB.

The requirement for the received signal level under static conditions is that the MS shall measure and report to the BS over the range -110 dBm to -48 dBm. For RF levels above -48 dBm, the MS must report the same signal level to the BS. Because of those requirements, the LNA is turned "ON" (FRACTRL = "0") for received levels below -48 dBm. This leaves the AGC in the SUMMA to adjust the gain to desired output value (56mVpp). This is accomplished in DSP by measuring the received IQ level after the selectivity filtering (IF-filters, $\Sigma\Delta\pm$ converter and FIR-filter in DSP). For RF levels below -94 dBm, the output level of the receiver drops dB by dB with a level of 9 mVp-p @-110 dBm for GSM900 and 7.1 mVp-p @ -110 dBm for GSM1800.

This strategy is chosen as a compromise between avoiding saturation when strong interfering signals are present and not sacrificing the signal to noise ratio. The 56 mVpp target level is set, because the RX-DAC in the COBBA in baseband will saturate at 1.4 Vpp. This results in a headroom of 28 dB which is sufficient for the +/- 200 kHz faded adjacent channel (approximately 19 dB) and an extra 9 dB for pre-monitoring.

AFC function

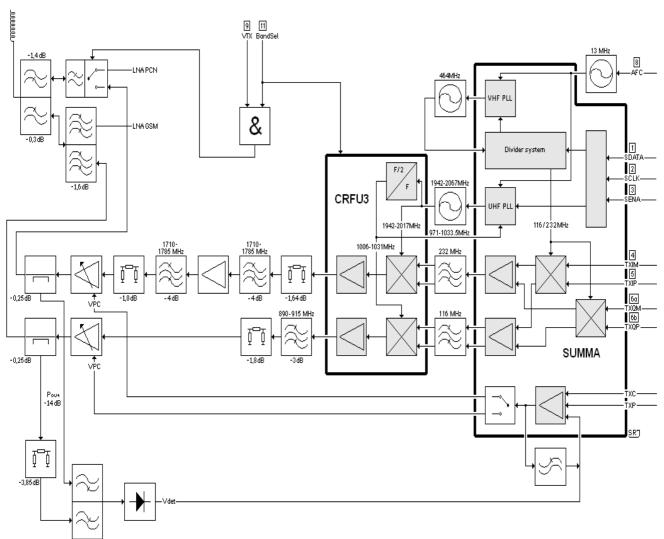

In order to maintain the clock of the transceiver, i.e. the 13 MHz VCTCXO, locked to the frequency of the base station an AFC (Automatic Frequency Control) is used. The AFC reduces variations in the frequency of the VCTCXO due to temperature drift. The AFC voltage is generated by baseband with an 11 bit DAC in the COBBA. There is a RC-filter in the AFC control line to reduce the noise from the converter.

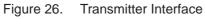
The AFC voltage is obtained by means of Pure Sine Wave (PSW) slots, which are a part of the signaling from the base station. The PSW slots are repeated every 10 frames, meaning that there is a slot in every 46 ms. Since changes in the VCTCXO -output frequency due to temperature variations are relatively slow compared to the 46 ms, the transceiver has a stable clock frequency.

When the transceiver is in sleep mode and "wakes" up to receive mode, there is only about 5 ms for the AFC-voltage to settle. When the first burst arrives the system clock has to be settled to +/- 0.1 ppm frequency accuracy. The VCTCXO-module requires about 4 ms to settle into the final frequency. The amplitude rises to maximum in about 3 ms, but because the frequency–settling time is higher, the oscillator must be powered up early enough to avoid frequency errors.

Interfacing

The interfacing between RF and BB is comprised of the signals stated in the following diagrams and tables.


RX:


Figure 25. Receiver Interface

System Module

7. RXI	RX, Analogue IQ sig- nal	Analogue 13MHz RX signal from SUMMA to 12bit ADC in COBBA.
8. AFC	Automatic Frequency Control	Fine adjusts to 13MHz clock from Base Station. 11 bit DC–voltage (0 to 2.346 Volt)
9. VTX	Voltage TX/RX	Controls the switch between PCN TX and PCN RX. Analogue signal (0 or 3 Volt)
10. FraCrl	Front end Amplifier Control	Turns the LNA on and off (30dB difference).
11. BandSel	Band Select	Selects between GSM and PCN band inside the CRFU3. Turns the correct LNA's and Mixers on and off inside the CRFU3.
12. RXC	RX control	Analogue control voltage between 0.12 and 2.33 volt (10bit) for the Automatic Gain Control Amplifier.

PAMS

1. SDATA	Synth Data	Digital information about the conditions for the phone such as GSM/PCN, TX/RX, selected channel (controls divider ratio) ect.
2. SCLK	Synth Clock	Serial clock at 3.25MHz
3. SENA	Synth Enable	Enables the serial data to be send to registers (PLL en- able, latch enable).
4. TXI	TX I–part of IQ signal	I-signal to be transmitted. 8bit analogue signal at 0.8V with a differential voltage swing of 1.1 Volt.
5. TXQ	TX Q–part of IQ signal	Q-signal to be transmitted. 8bit analogue signal at 0.8V with a differential voltage swing of 1.1 Volt.
6a. TXC	TX control	Controls the output burst shape. Analogue signal.
6b. TXP	TX control	Controls the output burst.

A specification of the interface signals together with the supply voltages is given in the above table.

Parts Lists

System Module (0201234)

(EDMS V 3.11)

ltem	Code	Description	Value	Туре
R100	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R101	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R102	1430801	Chip resistor	2.1 k	1 % 0.063 W 0402
R103	1825005	Chip varistor		vwm14v vc30v 0805
R104	1430700	Chip resistor	10	5 % 0.063 W 0402
R105	1430861	Chip resistor	110 k	1 % 0.063 W 0402
R106	1430812	Chip resistor	220 k	5 % 0.063 W 0402
R108	1430740	Chip resistor	330	5 % 0.063 W 0402
R109	1430734	Chip resistor	220	5 % 0.063 W 0402
R111	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R112	1430215	Chip resistor	68 k	1 % 0.063 W 0402
R113	1430215	Chip resistor	68 k	1 % 0.063 W 0402
R114	1430848	Chip resistor	12 k	1 % 0.063 W 0402
R115	1430726	Chip resistor	100	5 % 0.063 W 0402
R116	1430726	Chip resistor	100	5 % 0.063 W 0402
R117	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R118	1430734	Chip resistor	220	5 % 0.063 W 0402
R121	1430826	Chip resistor	680 k	5 % 0.063 W 0402
R122	1430830	Chip resistor	1.0 M	5 % 0.063 W 0402
R123	1430796	Chip resistor	47 k	5 % 0.063 W 0402
R124	1430830	Chip resistor	1.0 M	5 % 0.063 W 0402
R125	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R126	1430796	Chip resistor	47 k	5 % 0.063 W 0402
R127	1820037	NTC resistor	47 k	10 % 0603
R128	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R131	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R132	1430808	Chip resistor	150 k	5 % 0.063 W 0402
R134	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R135	1430816	Chip resistor	330 k	5 % 0.063 W 0402
R137	1419003	Chip resistor	22	5 % 0.063 W 0402
R138	1430812	Chip resistor	220 k	5 % 0.063 W 0402
R139	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R140	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R141	1430812	Chip resistor	220 k	5 % 0.063 W 0402
R142	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R143	1430796	Chip resistor	47 k	5 % 0.063 W 0402

R144 1430820 Chip resistor 470 k 5 % 0.063 W 0402 R200 1430816 Chip resistor 330 k 5 % 0.063 W 0402 R202 1430804 Chip resistor 200 5 % 0.063 W 0402 R205 1430734 Chip resistor 220 5 % 0.063 W 0402 R206 1620031 Res network 0w06 2x100k j 0404 R207 1620025 Res network 0w06 2x100k j 0404 R212 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R214 1430762 Chip resistor 47 k 5 % 0.063 W 0402 R215 1620031 Res network 0w06 2x10k j 0404 R216 162013 Res network 0w06 2x1k0 j 0404 R217 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R219 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R220 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R221 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R222 1430780 Chip resistor 330 k <td< th=""><th>R144</th><th>1/30820</th><th>Chin resistor</th><th>470 k</th><th>5 % 0.063 W 0402</th></td<>	R144	1/30820	Chin resistor	470 k	5 % 0.063 W 0402
R2021430804Chip resistor100 k5 % 0.063 W 0402R2051430734Chip resistor2205 % 0.063 W 0402R2061620031Res network0w06 2x100 k j 0404R2071620025Res network0w06 2x10 k j 0404R2121430796Chip resistor47 k5 % 0.063 W 0402R2141430744Chip resistor4705 % 0.063 W 0402R2141430744Chip resistor2.2 k5 % 0.063 W 0402R2151620031Res network0w06 2x1k0 j 0404R2161620103Res network0w06 2x22r j 0404R2171430762Chip resistor2.2 k5 % 0.063 W 0402R2181430762Chip resistor2.2 k5 % 0.063 W 0402R2191430762Chip resistor2.2 k5 % 0.063 W 0402R2201430778Chip resistor10 k5 % 0.063 W 0402R2231430778Chip resistor10 k5 % 0.063 W 0402R2241430718Chip resistor300 k5 % 0.063 W 0402R2251430718Chip resistor15 k5 % 0.063 W 0402R2231430710Chip resistor225 % 0.063 W 0402R2311430710Chip resistor12 k5 % 0.063 W 0402R3011430778Chip resistor10 k5 % 0.063 W 0402R3011430778Chip resistor10 k5 % 0.063 W 0402R3011430770Chip resistor10 k5 % 0.063 W 0402R3011430776 </td <td></td> <td></td> <td>•</td> <td></td> <td></td>			•		
R205 1430734 Chip resistor 220 5 % 0.063 W 0402 R206 1620031 Res network 0w06 2x110k j 0404 R207 1620025 Res network 0w06 2x10k j 0404 R208 1620019 Res network 0w06 2x10k j 0404 R212 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R214 1430744 Chip resistor 470 5 % 0.063 W 0402 R215 1620013 Res network 0w06 2x22r j 0404 R216 1620103 Res network 0w06 2x22r j 0404 R217 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R219 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R220 1430762 Chip resistor 10 k 5 % 0.063 W 0402 R221 1430762 Chip resistor 10 k 5 % 0.063 W 0402 R222 1430718 Chip resistor 330 k 5 % 0.063 W 0402 R222 1430718 Chip resistor 15 k 5 % 0.063 W 0402			•		
R206 1620031 Res network 0w06 2x1k0 j 0404 R207 1620025 Res network 0w06 2x100k j 0404 R208 1620019 Res network 0w06 2x10k j 0404 R212 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R214 1430744 Chip resistor 470 5 % 0.063 W 0402 R215 1620013 Res network 0w06 2x1k0 j 0404 R216 1620103 Res network 0w06 2x1k0 j 0404 R217 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R218 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R220 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R221 1430762 Chip resistor 10 k 5 % 0.063 W 0402 R222 1430778 Chip resistor 300 k 5 % 0.063 W 0402 R222 1430718 Chip resistor 15 k 5 % 0.063 W 0402 R223 1430710 Chip resistor 15 k 5 % 0.063 W 0402			•		
R207 1620025 Res network 0w06 2x10k j 0404 R208 1620019 Res network 0w06 2x10k j 0404 R212 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R214 1430744 Chip resistor 470 5 % 0.063 W 0402 R215 1620031 Res network 0w06 2x1k0 j 0404 R216 1620103 Res network 0w06 2x22r j 0404 R217 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R218 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R220 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R223 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R225 1430215 Chip resistor 30 k 5 % 0.063 W 0402 R226 1430816 Chip resistor 30 k 5 % 0.063 W 0402 R227 1430718 Chip resistor 15 k 5 % 0.063 W 0402 R230 1430784 Chip resistor 12 k 5 % 0.063 W 0402 R231 1430710 Chip resistor 10 k 5 %				220	
R208 1620019 Res network 0w06 2x10k j 0404 R212 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R214 1430744 Chip resistor 470 5 % 0.063 W 0402 R215 1620031 Res network 0w06 2x1k0 j 0404 R216 1620103 Res network 0w06 2x2r j 0404 R217 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R218 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R220 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R223 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R225 1430215 Chip resistor 30 k 5 % 0.063 W 0402 R226 1430816 Chip resistor 30 k 5 % 0.063 W 0402 R228 1430718 Chip resistor 15 k 5 % 0.063 W 0402 R230 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R231 1430710 Chip resistor 10 k 5					,
R212 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R214 1430744 Chip resistor 470 5 % 0.063 W 0402 R215 1620031 Res network 0w06 2x1k0 j 0404 R216 1620103 Res network 0w06 2x22r j 0404 R217 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R218 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R219 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R220 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R220 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R220 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R221 1430716 Chip resistor 30 k 5 % 0.063 W 0402 R222 1430718 Chip resistor 15 k 5 % 0.063 W 0402 R231 1430710 Chip resistor 15 k 5 % 0.063 W 0402 R232 1430710 Chip resistor 10 k 5 % 0.063 W 0402 R301 1430778 Chip re					•
R214 1430744 Chip resistor 470 5 % 0.063 W 0402 R215 1620031 Res network 0w06 2x1k0 j 0404 R216 1620103 Res network 0w06 2x22r j 0404 R217 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R218 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R219 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R220 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R223 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R225 1430215 Chip resistor 68 k 1 % 0.063 W 0402 R226 1430718 Chip resistor 30 k 5 % 0.063 W 0402 R228 1430718 Chip resistor 15 k 5 % 0.063 W 0402 R230 1430784 Chip resistor 22 5 % 0.063 W 0402 R300 1430770 Chip resistor 10 k 5 % 0.063 W 0402 R301 1430770 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430770 Chip resist				47 k	•
R215 1620031 Res network 0w06 2x1k0 j 0404 R216 1620103 Res network 0w06 2x22r j 0404 R217 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R218 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R219 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R220 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R223 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R225 1430215 Chip resistor 330 k 5 % 0.063 W 0402 R226 1430816 Chip resistor 330 k 5 % 0.063 W 0402 R227 1430718 Chip resistor 47 5 % 0.063 W 0402 R230 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R231 1430710 Chip resistor 22 5 % 0.063 W 0402 R300 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R301 143070 Chip resistor 10 k 5 % 0.063 W 0402 R302 1430778 Chip resist			•		
R216 1620103 Res network 0w06 2x22r j 0404 R217 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R218 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R219 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R220 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R223 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R225 1430215 Chip resistor 68 k 1 % 0.063 W 0402 R226 1430816 Chip resistor 330 k 5 % 0.063 W 0402 R227 1430718 Chip resistor 47 5 % 0.063 W 0402 R230 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R231 1430710 Chip resistor 22 5 % 0.063 W 0402 R301 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R301 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R302 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430776			•	470	
R217 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R218 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R219 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R220 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R223 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R223 1430778 Chip resistor 68 k 1 % 0.063 W 0402 R225 1430215 Chip resistor 68 k 1 % 0.063 W 0402 R226 1430718 Chip resistor 330 k 5 % 0.063 W 0402 R228 1430718 Chip resistor 15 k 5 % 0.063 W 0402 R230 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R231 1430710 Chip resistor 22 5 % 0.063 W 0402 R300 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R301 1430804 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303					•
R218 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R219 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R220 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R223 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R223 1430778 Chip resistor 68 k 1 % 0.063 W 0402 R225 1430215 Chip resistor 68 k 1 % 0.063 W 0402 R226 1430718 Chip resistor 330 k 5 % 0.063 W 0402 R228 1430718 Chip resistor 47 5 % 0.063 W 0402 R230 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R231 1430710 Chip resistor 22 5 % 0.063 W 0402 R300 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R301 1430804 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430770 Chip resistor 10 k 5 % 0.063 W 0402 R310				22k	•
R219 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R220 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R223 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R225 1430215 Chip resistor 68 k 1 % 0.063 W 0402 R226 1430816 Chip resistor 330 k 5 % 0.063 W 0402 R227 1430718 Chip resistor 47 5 % 0.063 W 0402 R230 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R231 1430710 Chip resistor 22 5 % 0.063 W 0402 R232 1430710 Chip resistor 22 5 % 0.063 W 0402 R300 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R301 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430770 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R310			•		
R220 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R223 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R225 1430215 Chip resistor 68 k 1 % 0.063 W 0402 R226 1430816 Chip resistor 330 k 5 % 0.063 W 0402 R227 1430718 Chip resistor 47 5 % 0.063 W 0402 R228 1430718 Chip resistor 47 5 % 0.063 W 0402 R230 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R231 1430710 Chip resistor 22 5 % 0.063 W 0402 R232 1430710 Chip resistor 22 5 % 0.063 W 0402 R300 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R301 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430770 Chip resistor 47 k 5 % 0.063 W 0402 R310 1430770 Chip resistor 47 k 5 % 0.063 W 0402 R311 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
R223 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R225 1430215 Chip resistor 68 k 1 % 0.063 W 0402 R226 1430816 Chip resistor 330 k 5 % 0.063 W 0402 R227 1430718 Chip resistor 47 5 % 0.063 W 0402 R228 1430718 Chip resistor 47 5 % 0.063 W 0402 R230 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R231 1430710 Chip resistor 22 5 % 0.063 W 0402 R300 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R301 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R302 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430770 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R310 1430770 Chip resistor 20 k 5 % 0.063 W 0402 R311	-		•		
R225 1430215 Chip resistor 68 k 1 % 0.063 W 0402 R226 1430816 Chip resistor 330 k 5 % 0.063 W 0402 R227 1430718 Chip resistor 47 5 % 0.063 W 0402 R228 1430718 Chip resistor 47 5 % 0.063 W 0402 R230 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R231 1430710 Chip resistor 22 5 % 0.063 W 0402 R232 1430710 Chip resistor 22 5 % 0.063 W 0402 R300 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R301 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R302 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430776 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430776 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R310 1430770 Chip resistor 220 k 5 % 0.063 W 0402 R311 <			•		
R226 1430816 Chip resistor 330 k 5 % 0.063 W 0402 R227 1430718 Chip resistor 47 5 % 0.063 W 0402 R228 1430718 Chip resistor 47 5 % 0.063 W 0402 R230 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R231 1430710 Chip resistor 22 5 % 0.063 W 0402 R232 1430710 Chip resistor 22 5 % 0.063 W 0402 R300 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R301 1430778 Chip resistor 100 k 5 % 0.063 W 0402 R302 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430770 Chip resistor 47 k 5 % 0.063 W 0402 R310 1430770 Chip resistor 47 k 5 % 0.063 W 0402 R311 1430770 Chip resistor 220 k 5 % 0.063 W 0402 R313 1430776 Chip resistor 220 k 5 % 0.063 W 0402 R313 <					
R227 1430718 Chip resistor 47 5 % 0.063 W 0402 R228 1430718 Chip resistor 47 5 % 0.063 W 0402 R230 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R231 1430710 Chip resistor 22 5 % 0.063 W 0402 R232 1430710 Chip resistor 22 5 % 0.063 W 0402 R300 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R301 1430778 Chip resistor 100 k 5 % 0.063 W 0402 R302 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430770 Chip resistor 10 k 5 % 0.063 W 0402 R309 1430770 Chip resistor 47 k 5 % 0.063 W 0402 R310 1430770 Chip resistor 47 k 5 % 0.063 W 0402 R311 1430770 Chip resistor 220 k 5 % 0.063 W 0402 R312 1620017 Res network 0w06 2x100r j 0404 R313 1430778			•		
R228 1430718 Chip resistor 47 5 % 0.063 W 0402 R230 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R231 1430710 Chip resistor 22 5 % 0.063 W 0402 R232 1430710 Chip resistor 22 5 % 0.063 W 0402 R300 1430778 Chip resistor 22 5 % 0.063 W 0402 R301 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R302 1430778 Chip resistor 100 k 5 % 0.063 W 0402 R303 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430770 Chip resistor 10 k 5 % 0.063 W 0402 R310 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R311 1430770 Chip resistor 20 k 5 % 0.063 W 0402 R312 1620017 Res network 0w06 2x100r j 0404 R313 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R315 1430690			•		
R230 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R231 1430710 Chip resistor 22 5 % 0.063 W 0402 R232 1430710 Chip resistor 22 5 % 0.063 W 0402 R300 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R301 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R302 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430770 Chip resistor 10 k 5 % 0.063 W 0402 R309 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R310 1430770 Chip resistor 220 k 5 % 0.063 W 0402 R311 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R312 1620017 Res network 0w06 2x100r j 0404 R313 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R314 1430778			-		
R231 1430710 Chip resistor 22 5 % 0.063 W 0402 R232 1430710 Chip resistor 22 5 % 0.063 W 0402 R300 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R301 1430804 Chip resistor 10 k 5 % 0.063 W 0402 R302 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430770 Chip resistor 10 k 5 % 0.063 W 0402 R309 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R310 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R311 1430770 Chip resistor 220 k 5 % 0.063 W 0402 R311 1430770 Chip resistor 220 k 5 % 0.063 W 0402 R313 1430726 Chip resistor 100 5 % 0.063 W 0402 R315 1430690 Chip resistor 10 k 5 % 0.063 W 0402 R318					
R232 1430710 Chip resistor 22 5 % 0.063 W 0402 R300 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R301 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R302 1430778 Chip resistor 100 k 5 % 0.063 W 0402 R303 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430770 Chip resistor 10 k 5 % 0.063 W 0402 R309 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R310 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R311 1430770 Chip resistor 220 k 5 % 0.063 W 0402 R311 1430770 Chip resistor 220 k 5 % 0.063 W 0402 R312 1620017 Res network 0w06 2x100r j 0404 R313 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R317 1430690 Chip resistor 10 k 5 % 0.063 W 0402 R318 1430778 </td <td></td> <td></td> <td>•</td> <td></td> <td></td>			•		
R300 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R301 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R302 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R307 1430770 Chip resistor 10 k 5 % 0.063 W 0402 R309 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R310 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R311 1430770 Chip resistor 220 k 5 % 0.063 W 0402 R311 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R312 1620017 Res network 0w06 2x100r j 0404 R313 1430726 Chip resistor 10 k 5 % 0.063 W 0402 R315 1430690 Chip resistor 10 k 5 % 0.063 W 0402 R318 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R413 1430778<			•		
R301 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R302 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R307 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R309 1430796 Chip resistor 4.7 k 5 % 0.063 W 0402 R310 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R311 1430770 Chip resistor 220 k 5 % 0.063 W 0402 R311 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R313 1430726 Chip resistor 100 5 % 0.063 W 0402 R315 1430690 Chip resistor 10 k 5 % 0.063 W 0402 R318 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R318 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R413 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R415 <td></td> <td></td> <td>•</td> <td></td> <td></td>			•		
R302 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R303 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R307 1430770 Chip resistor 10 k 5 % 0.063 W 0402 R309 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R309 1430770 Chip resistor 47 k 5 % 0.063 W 0402 R310 1430770 Chip resistor 47 k 5 % 0.063 W 0402 R311 1430770 Chip resistor 20 k 5 % 0.063 W 0402 R311 1430770 Chip resistor 20 k 5 % 0.063 W 0402 R311 1430812 Chip resistor 20 k 5 % 0.063 W 0402 R312 1620017 Res network 0w06 2x100r j 0404 R313 1430726 Chip resistor 100 5 % 0.063 W 0402 R315 1430690 Chip resistor 10 k 5 % 0.063 W 0402 R318 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R319 1430826 Chip resistor 10 k 5 % 0.063 W 0402 R413 1430778			•		
R303 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R307 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R309 1430770 Chip resistor 47 k 5 % 0.063 W 0402 R310 1430770 Chip resistor 47 k 5 % 0.063 W 0402 R310 1430770 Chip resistor 47 k 5 % 0.063 W 0402 R311 1430770 Chip resistor 220 k 5 % 0.063 W 0402 R311 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R312 1620017 Res network 0w06 2x100r j 0404 R313 1430726 Chip resistor 100 5 % 0.063 W 0402 R315 1430690 Chip resistor 10 k 5 % 0.063 W 0402 R317 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R318 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R413 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R413 1430778 Chip resistor 12 k 5 % 0.063 W 0402 R418 1430778 <td>R302</td> <td></td> <td>•</td> <td>10 k</td> <td>5 % 0.063 W 0402</td>	R302		•	10 k	5 % 0.063 W 0402
R3071430770Chip resistor4.7 k5 % 0.063 W 0402R3091430796Chip resistor47 k5 % 0.063 W 0402R3101430770Chip resistor4.7 k5 % 0.063 W 0402R3111430812Chip resistor220 k5 % 0.063 W 0402R3121620017Res network0w06 2x100r j 0404R3131430726Chip resistor1005 % 0.063 W 0402R3151430690Chip resistor1005 % 0.063 W 0402R3171430778Chip resistor10 k5 % 0.063 W 0402R3181430778Chip resistor10 k5 % 0.063 W 0402R3191430826Chip resistor680 k5 % 0.063 W 0402R4131430778Chip resistor10 k5 % 0.063 W 0402R4131430778Chip resistor10 k5 % 0.063 W 0402R4181430778Chip resistor10 k5 % 0.063 W 0402R4181430778Chip resistor10 k5 % 0.063 W 0402R4181430778Chip resistor10 k5 % 0.063 W 0402R4201430778Chip resistor10 k5 % 0.063 W 0402	R303		•	10 k	5 % 0.063 W 0402
R309 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R310 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R311 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R312 1620017 Res network 0w06 2x100r j 0404 R313 1430726 Chip resistor 100 5 % 0.063 W 0402 R315 1430690 Chip resistor 100 5 % 0.063 W 0402 R317 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R318 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R319 1430826 Chip resistor 10 k 5 % 0.063 W 0402 R413 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R413 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R413 1430778 Chip resistor 12 k 5 % 0.063 W 0402 R415 1430778 Chip resistor 12 k 5 % 0.063 W 0402 R418 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R420 1430778	R307	1430770	•	4.7 k	5 % 0.063 W 0402
R311 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R312 1620017 Res network 0w06 2x100r j 0404 R313 1430726 Chip resistor 100 5 % 0.063 W 0402 R315 1430690 Chip resistor 100 5 % 0.063 W 0402 R317 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R318 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R319 1430826 Chip resistor 10 k 5 % 0.063 W 0402 R413 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R413 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R415 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R415 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R418 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R420 1430778 Chip resistor 10 k 5 % 0.063 W 0402	R309		•	47 k	5 % 0.063 W 0402
R312 1620017 Res network 0w06 2x100r j 0404 R313 1430726 Chip resistor 100 5 % 0.063 W 0402 R315 1430690 Chip jumper 0402 R317 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R318 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R319 1430826 Chip resistor 10 k 5 % 0.063 W 0402 R413 1430778 Chip resistor 680 k 5 % 0.063 W 0402 R413 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R414 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R415 1430780 Chip resistor 12 k 5 % 0.063 W 0402 R418 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R420 1430778 Chip resistor 10 k 5 % 0.063 W 0402	R310	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R313 1430726 Chip resistor 100 5 % 0.063 W 0402 R315 1430690 Chip jumper 0402 R317 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R318 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R318 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R319 1430826 Chip resistor 680 k 5 % 0.063 W 0402 R413 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R413 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R415 1430780 Chip resistor 10 k 5 % 0.063 W 0402 R418 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R420 1430778 Chip resistor 10 k 5 % 0.063 W 0402	R311	1430812	Chip resistor	220 k	5 % 0.063 W 0402
R315 1430690 Chip jumper 0402 R317 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R318 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R319 1430826 Chip resistor 680 k 5 % 0.063 W 0402 R413 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R413 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R415 1430780 Chip resistor 12 k 5 % 0.063 W 0402 R418 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R420 1430778 Chip resistor 10 k 5 % 0.063 W 0402	R312	1620017	Res network		0w06 2x100r j 0404
R3171430778Chip resistor10 k5 % 0.063 W 0402R3181430778Chip resistor10 k5 % 0.063 W 0402R3191430826Chip resistor680 k5 % 0.063 W 0402R4131430778Chip resistor10 k5 % 0.063 W 0402R4151430778Chip resistor10 k5 % 0.063 W 0402R4151430778Chip resistor12 k5 % 0.063 W 0402R4181430778Chip resistor10 k5 % 0.063 W 0402R4201430778Chip resistor10 k5 % 0.063 W 0402	R313	1430726	Chip resistor	100	5 % 0.063 W 0402
R3181430778Chip resistor10 k5 % 0.063 W 0402R3191430826Chip resistor680 k5 % 0.063 W 0402R4131430778Chip resistor10 k5 % 0.063 W 0402R4151430780Chip resistor12 k5 % 0.063 W 0402R4181430778Chip resistor10 k5 % 0.063 W 0402R4201430778Chip resistor10 k5 % 0.063 W 0402	R315	1430690	Chip jumper		0402
R3191430826Chip resistor680 k5 % 0.063 W 0402R4131430778Chip resistor10 k5 % 0.063 W 0402R4151430780Chip resistor12 k5 % 0.063 W 0402R4181430778Chip resistor10 k5 % 0.063 W 0402R4201430778Chip resistor10 k5 % 0.063 W 0402	R317	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R4131430778Chip resistor10 k5 % 0.063 W 0402R4151430780Chip resistor12 k5 % 0.063 W 0402R4181430778Chip resistor10 k5 % 0.063 W 0402R4201430778Chip resistor10 k5 % 0.063 W 0402	R318	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R4151430780Chip resistor12 k5 % 0.063 W 0402R4181430778Chip resistor10 k5 % 0.063 W 0402R4201430778Chip resistor10 k5 % 0.063 W 0402	R319	1430826	Chip resistor	680 k	5 % 0.063 W 0402
R4181430778Chip resistor10 k5 % 0.063 W 0402R4201430778Chip resistor10 k5 % 0.063 W 0402	R413	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R420 1430778 Chip resistor 10 k 5 % 0.063 W 0402	R415	1430780	Chip resistor	12 k	5 % 0.063 W 0402
•	R418	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R421 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402	R420		•	10 k	5 % 0.063 W 0402
	R421	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402

System Module

R422	1430710	Chip resistor	22	5 % 0.063 W 0402
R423	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R424	1430718	Chip resistor	47	5 % 0.063 W 0402
R500	1430772	Chip resistor	5.6 k	5 % 0.063 W 0402
R501	1430772	Chip resistor	5.6 k	5 % 0.063 W 0402
R502	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R503	1430738	Chip resistor	270	5 % 0.063 W 0402
R504	1430708	Chip resistor	18	5 % 0.063 W 0402
R505	1430738	Chip resistor	270	5 % 0.063 W 0402
R506	1430726	Chip resistor	100	5 % 0.063 W 0402
R507	1430718	Chip resistor	47	5 % 0.063 W 0402
R508	1430718	Chip resistor	47	5 % 0.063 W 0402
R509	1430726	Chip resistor	100	5 % 0.063 W 0402
R510	1430700	Chip resistor	10	5 % 0.063 W 0402
R511	1430744	Chip resistor	470	5 % 0.063 W 0402
R512	1430744	Chip resistor	470	5 % 0.063 W 0402
R513	1430744	Chip resistor	470	5 % 0.063 W 0402
R514	1430700	Chip resistor	10	5 % 0.063 W 0402
R515	1430744	Chip resistor	470	5 % 0.063 W 0402
R516	1430726	Chip resistor	100	5 % 0.063 W 0402
R518	1820037	NTC resistor	47 k	10 % 0603
R519	1430691	Chip resistor	2.2	5 % 0.063 W 0402
R520	1430691	Chip resistor	2.2	5 % 0.063 W 0402
R521	1430691	Chip resistor	2.2	5 % 0.063 W 0402
R522	1430691	Chip resistor	2.2	5 % 0.063 W 0402
R601	1430700	Chip resistor	10	5 % 0.063 W 0402
R602	1430728	Chip resistor	120	5 % 0.063 W 0402
R603	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R604	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R605	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R606	1430832	Chip resistor	2.7 k	5 % 0.063 W 0402
R607	1430738	Chip resistor	270	5 % 0.063 W 0402
R608	1430722	Chip resistor	68	5 % 0.063 W 0402
R609	1430700	Chip resistor	10	5 % 0.063 W 0402
R610	1430700	Chip resistor	10	5 % 0.063 W 0402
R611	1430746	Chip resistor	560	5 % 0.063 W 0402
R612	1430746	Chip resistor	560	5 % 0.063 W 0402
R614	1430690	Chip jumper		0402
R619		Chip resistor	22	5 % 0.063 W 0402
R700	1430746	•	560	5 % 0.063 W 0402
R701	1430744	Chip resistor	470	5 % 0.063 W 0402
R702		Chip resistor	22 k	5 % 0.063 W 0402
		-		

R703	1430690	Chip jumper		0402
R704	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R705	1430790	Chip resistor	27 k	5 % 0.063 W 0402
R706	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R707	1430784	Chip resistor	15 k	5 % 0.063 W 0402
R708	1620019	Res network		0w06 2x10k j 0404
R709	1430710	Chip resistor	22	5 % 0.063 W 0402
R710	1620019	Res network		0w06 2x10k j 0404
R711	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R712	1430726	Chip resistor	100	5 % 0.063 W 0402
R713	1430710	Chip resistor	22	5 % 0.063 W 0402
R714	1620019	Res network		0w06 2x10k j 0404
R715	1430788	Chip resistor	22 k	5 % 0.063 W 0402
R716	1430740	Chip resistor	330	5 % 0.063 W 0402
R717	1430734	Chip resistor	220	5 % 0.063 W 0402
R718	1430734	Chip resistor	220	5 % 0.063 W 0402
R719	1430724	Chip resistor	82	5 % 0.063 W 0402
R721	1430734	Chip resistor	220	5 % 0.063 W 0402
R722	1620031	Res network		0w06 2x1k0 j 0404
R724	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R725	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R726	1430784	Chip resistor	15 k	5 % 0.063 W 0402
R727	1430758	Chip resistor	1.5 k	5 % 0.063 W 0402
R728	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R729	1430790	Chip resistor	27 k	5 % 0.063 W 0402
R730	1430772	Chip resistor	5.6 k	5 % 0.063 W 0402
R731	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R732	1620103	Res network		0w06 2x22r j 0404
R733	1430792	Chip resistor	33 k	5 % 0.063 W 0402
R734	1430726	Chip resistor	100	5 % 0.063 W 0402
R735	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R736	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R737	1430726	Chip resistor	100	5 % 0.063 W 0402
R741	1430700	Chip resistor	10	5 % 0.063 W 0402
R742	1430700	Chip resistor	10	5 % 0.063 W 0402
R743	1430718	Chip resistor	47	5 % 0.063 W 0402
R745	1430700	Chip resistor	10	5 % 0.063 W 0402
R765	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R766	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
C100		Ceramic cap.	220 n	20 % 50 V 1206
C101		Ceramic cap.	100 n	10 % 16 V 0603
C102	2320779	Ceramic cap.	100 n	10 % 16 V 0603

0400	0000404	0		40.00 0000
C103		Ceramic cap.	5R 1 u	10 % 0603
C104		Ceramic cap.	1.0 u	10 % 10 V 0805
C105		Ceramic cap.	27 p	5 % 50 V 0402
C107		Ceramic cap.	10 n	5 % 16 V 0402
C108		Ceramic cap.	27 p	5 % 50 V 0402
C109		Tantalum cap.	470 u	20 % 10 V 7.3x4.3x4.1
C110		Tantalum cap.	470 u	20 % 10 V 7.3x4.3x4.1
C111		Tantalum cap.	470 u	20 % 10 V 7.3x4.3x4.1
C112		Tantalum cap.	470 u	20 % 10 V 7.3x4.3x4.1
C113		Tantalum cap.	470 u	20 % 10 V 7.3x4.3x4.1
C114		Ceramic cap.	10 p	5 % 50 V 0402
C115		Tantalum cap.	220 u	20 % 16 V 7.3x4.3x4.1
C116		Ceramic cap.	1.0 n	5 % 50 V 0402
C117		Tantalum cap.	10 u	20 % 10 V 3.2x1.6x1.6
C118	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C119	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C122	2610003	Tantalum cap.	10 u	20 % 10 V 3.2x1.6x1.6
C123	2320779	Ceramic cap.	100 n	10 % 16 V 0603
C124	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C125	2312211	Ceramic cap.	3.3 u	10 % 0805
C126	2320131	Ceramic cap.	33 n	10 % 16 V 0603
C127	2320538	Ceramic cap.	12 p	5 % 50 V 0402
C128	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C129	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C130	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C131	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C132	2320779	Ceramic cap.	100 n	10 % 16 V 0603
C133	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C134	2312403	Ceramic cap.	2.2 u	10 % 10 V 1206
C135	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C136	2610003	Tantalum cap.	10 u	20 % 10 V 3.2x1.6x1.6
C137	2312401	Ceramic cap.	1.0 u	10 % 10 V 0805
C138	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C139	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C140		Ceramic cap.	27 p	5 % 50 V 0402
C141	2320131	Ceramic cap.	33 n	10 % 16 V 0603
C142		Ceramic cap.	470 p	5 % 50 V 0402
C143		Ceramic cap.	100 n	10 % 10 V 0402
C144		Ceramic cap.	27 p	5 % 50 V 0402
C145		Ceramic cap.	100 p	5 % 50 V 0402
C146		Ceramic cap.	100 n	10 % 10 V 0402
C147		Ceramic cap.	27 p	5 % 50 V 0402
			1*	

C1482320560Ceramic cap.100 p5 % 50 V 0402C1492320915Ceramic cap.25 V 0402C1502320546Ceramic cap.27 p5 % 50 V 0402C1512320620Ceramic cap.10 n5 % 16 V 0402	
C150 2320546 Ceramic cap. 27 p 5 % 50 V 0402	
C152 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6	
C153 2320546 Ceramic cap. 27 p 5 % 50 V 0402	
C154 2320783 Ceramic cap. 33 n 10 % 10 V 0402	
C155 2320546 Ceramic cap. 27 p 5 % 50 V 0402	
C156 2320546 Ceramic cap. 27 p 5 % 50 V 0402	
C158 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402	
C162 2320576 Ceramic cap. 470 p 5 % 50 V 0402	
C163 2320107 Ceramic cap. 10 n 5 % 50 V 0603	
C165 2320546 Ceramic cap. 27 p 5 % 50 V 0402	
C166 2320546 Ceramic cap. 27 p 5 % 50 V 0402	
C167 2320779 Ceramic cap. 100 n 10 % 16 V 0603	
C168 2320546 Ceramic cap. 27 p 5 % 50 V 0402	
C169 2320546 Ceramic cap. 27 p 5 % 50 V 0402	
C201 2610205 Tantalum cap. 10 u 20 % 4 V 2.0x1.3x1.2	
C202 2320546 Ceramic cap. 27 p 5 % 50 V 0402	
C203 2610205 Tantalum cap. 10 u 20 % 4 V 2.0x1.3x1.2	
C204 2320546 Ceramic cap. 27 p 5 % 50 V 0402	
C205 2320783 Ceramic cap. 33 n 10 % 10 V 0402	
C206 2610205 Tantalum cap. 10 u 20 % 4 V 2.0x1.3x1.2	
C207 2320783 Ceramic cap. 33 n 10 % 10 V 0402	
C208 2320783 Ceramic cap. 33 n 10 % 10 V 0402	
C209 2320546 Ceramic cap. 27 p 5 % 50 V 0402	
C210 2320783 Ceramic cap. 33 n 10 % 10 V 0402	
C213 2320783 Ceramic cap. 33 n 10 % 10 V 0402	
C215 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402	
C216 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402	
C218 2320546 Ceramic cap. 27 p 5 % 50 V 0402	
C219 2320546 Ceramic cap. 27 p 5 % 50 V 0402	
C220 2610205 Tantalum cap. 10 u 20 % 4 V 2.0x1.3x1.2	
C221 2320546 Ceramic cap. 27 p 5 % 50 V 0402	
C222 2320546 Ceramic cap. 27 p 5 % 50 V 0402	
C223 2320546 Ceramic cap. 27 p 5 % 50 V 0402	
C224 2320546 Ceramic cap. 27 p 5 % 50 V 0402	
C225 2320620 Ceramic cap. 10 n 5 % 16 V 0402	
C226 2320805 Ceramic cap. 100 n 10 % 10 V 0402	
C227 2320546 Ceramic cap. 27 p 5 % 50 V 0402	
C229 2320805 Ceramic cap. 100 n 10 % 10 V 0402	
C232 2320546 Ceramic cap. 27 p 5 % 50 V 0402	

System Module

C233	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C234		Ceramic cap.	27 p	5 % 50 V 0402
C235		Ceramic cap.	1.0 n	5 % 50 V 0402
C236		Ceramic cap.	1.0 n	5 % 50 V 0402
C242		Ceramic cap.	27 p	5 % 50 V 0402
C243		Ceramic cap.	27 p	5 % 50 V 0402
C244		Ceramic cap.	100 n	10 % 10 V 0402
C247		Ceramic cap.	10 n	5 % 16 V 0402
C248		Tantalum cap.	10 u	20 % 10 V 3.2x1.6x1.6
C249		Ceramic cap.	27 p	5 % 50 V 0402
C250		Ceramic cap.	27 p	5 % 50 V 0402
C251		Ceramic cap.	27 p	5 % 50 V 0402
C256		Ceramic cap.	1.0 n	5 % 50 V 0402
C257		Ceramic cap.	1.0 n	5 % 50 V 0402
C258		Ceramic cap.	33 n	10 % 10 V 0402
C259		Ceramic cap.	33 n	10 % 10 V 0402
C301		Ceramic cap.	1.0 n	5 % 50 V 0402
C304		Ceramic cap.		Y5 V 1206
C305	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C306	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C307	2312401	Ceramic cap.	1.0 u	10 % 10 V 0805
C313	2312401	Ceramic cap.	1.0 u	10 % 10 V 0805
C314	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C316	2312401	Ceramic cap.	1.0 u	10 % 10 V 0805
C317	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402
C400	2312401	Ceramic cap.	1.0 u	10 % 10 V 0805
C401	2312410	Ceramic cap.	1.0 u	10 % 16 V 1206
C402	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C500	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C501	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C503	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C504	2320536	Ceramic cap.	10 p	5 % 50 V 0402
C506	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C507	2320538	Ceramic cap.	12 p	5 % 50 V 0402
C508	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C510	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402
C511	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C512	2312401	Ceramic cap.	1.0 u	10 % 10 V 0805
C513		Ceramic cap.	12 p	5 % 50 V 0402
C514		Ceramic cap.	10 p	5 % 50 V 0402
C515		Ceramic cap.	10 p	5 % 50 V 0402
C516	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402

0540	0040404	0	4.0	
C519		Ceramic cap.	1.0 u	10 % 10 V 0805
C521		Ceramic cap.	27 p	5 % 50 V 0402
C522		Ceramic cap.	1.0 n	5 % 50 V 0402
C523		Ceramic cap.	12 p	5 % 50 V 0402
C524		Ceramic cap.	10 n	5 % 16 V 0402
C525		Ceramic cap.	10 n	5 % 16 V 0402
C526		Ceramic cap.	1.0 n	5 % 50 V 0402
C600		Ceramic cap.	1.8 p	0.25 % 50 V 0402
C601		Ceramic cap.	15 p	5 % 50 V 0402
C602		Ceramic cap.	5.6 p	0.25 % 50 V 0402
C603	2320540	Ceramic cap.	15 p	5 % 50 V 0402
C604	2320550	Ceramic cap.	39 p	5 % 50 V 0402
C605	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C606	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C607	2320538	Ceramic cap.	12 p	5 % 50 V 0402
C608	2320520	Ceramic cap.	2.2 p	0.25 % 50 V 0402
C609	2320522	Ceramic cap.	2.7 p	0.25 % 50 V 0402
C611	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C612	2320805	Ceramic cap.	100 n	10 % 10 V 0402
C613	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C615	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402
C616	2320550	Ceramic cap.	39 p	5 % 50 V 0402
C617	2320556	Ceramic cap.	68 p	5 % 50 V 0402
C618	2320556	Ceramic cap.	68 p	5 % 50 V 0402
C619	2320524	Ceramic cap.	3.3 p	0.25 % 50 V 0402
C621		Ceramic cap.	27 p	5 % 50 V 0402
C622	2320564	Ceramic cap.	150 p	5 % 50 V 0402
C623		Ceramic cap.	100 n	10 % 10 V 0402
C624		Ceramic cap.	100 n	10 % 10 V 0402
C625		Ceramic cap.	100 n	10 % 10 V 0402
C626		Ceramic cap.	27 p	5 % 50 V 0402
C627		Ceramic cap.	1.8 p	0.25 % 50 V 0402
C629		Ceramic cap.	1.8 p	0.25 % 50 V 0402
C631		Ceramic cap.	10 p	5 % 50 V 0402
C632		Ceramic cap.	1.0 n	5 % 50 V 0402
C633		Ceramic cap.	1.0 n	5 % 50 V 0402
C634		Ceramic cap.	3.9 p	0.25 % 50 V 0402
C635		Ceramic cap.	27 p	5 % 50 V 0402
C636		Ceramic cap.	8.2 p	0.25 % 50 V 0402
C637		Ceramic cap.	6.8 p	0.25 % 50 V 0402
C638		Ceramic cap.	0.0 p 1.8 p	0.25 % 50 V 0402
C639		Ceramic cap.	8.2 p	0.25 % 50 V 0402
0029	20200034	Ceramic Cap.	0.2 P	0.2J /0 JU V U4UZ

C640		Ceramic cap.	10 p	5 % 50 V 0402
C641		Ceramic cap.	39 p	5 % 50 V 0402
C642		Ceramic cap.	6.8 p	0.25 % 50 V 0402
C643		Ceramic cap.	1.8 p	0.25 % 50 V 0402
C645		Ceramic cap.	150 p	5 % 50 V 0402
C646	2320580	Ceramic cap.	680 p	5 % 50 V 0402
C647	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C648	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402
C649	2320532	Ceramic cap.	6.8 p	0.25 % 50 V 0402
C700	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C701	2320534	Ceramic cap.	8.2 p	0.25 % 50 V 0402
C702	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C703	2320530	Ceramic cap.	5.6 p	0.25 % 50 V 0402
C704	2320534	Ceramic cap.	8.2 p	0.25 % 50 V 0402
C705	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C706	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402
C707	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402
C708	2320556	Ceramic cap.	68 p	5 % 50 V 0402
C709	2320556	Ceramic cap.	68 p	5 % 50 V 0402
C710	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402
C712	2320530	Ceramic cap.	5.6 p	0.25 % 50 V 0402
C713	2320568	Ceramic cap.	220 p	5 % 50 V 0402
C714	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C715	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C716	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402
C717	2320526	Ceramic cap.	3.9 p	0.25 % 50 V 0402
C718	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402
C719	2320568	Ceramic cap.	220 p	5 % 50 V 0402
C720	2320562	Ceramic cap.	120 p	5 % 50 V 0402
C721	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402
C722	2312401	Ceramic cap.	1.0 u	10 % 10 V 0805
C723	2320550	Ceramic cap.	39 p	5 % 50 V 0402
C724	2320536	Ceramic cap.	10 p	5 % 50 V 0402
C725	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C726		Ceramic cap.	12 p	5 % 50 V 0402
C727		Ceramic cap.	12 p	5 % 50 V 0402
C728	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C729		Ceramic cap.	27 p	5 % 50 V 0402
C730		Ceramic cap.	10 n	5 % 16 V 0402
C731		Ceramic cap.	1.0 n	5 % 50 V 0402
C732		Ceramic cap.	1.0 n	5 % 50 V 0402
C733		Ceramic cap.	1.0 n	5 % 50 V 0402

PAMS

C734	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C735	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C736	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C737	2312401	Ceramic cap.	1.0 u	10 % 10 V 0805
C738	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402
C739	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402
C740	2310209	Ceramic cap.	2.2 n	5 % 50 V 1206
C741	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402
C742	2312211	Ceramic cap.	3.3 u	10 % 0805
C743	2320524	Ceramic cap.	3.3 p	0.25 % 50 V 0402
C744	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C745	2320524	Ceramic cap.	3.3 p	0.25 % 50 V 0402
C746	2320570	Ceramic cap.	270 p	5 % 50 V 0402
C747	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C748	2320091	Ceramic cap.	2.2 n	5 % 50 V 0603
C749	2320516	Ceramic cap.	1.5 p	0.25 % 50 V 0402
C750	2312401	Ceramic cap.	1.0 u	10 % 10 V 0805
C751	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C752	2320564	Ceramic cap.	150 p	5 % 50 V 0402
C753	2320564	Ceramic cap.	150 p	5 % 50 V 0402
C754	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C755	2320564	Ceramic cap.	150 p	5 % 50 V 0402
C756	2320620	Ceramic cap.	10 n	
C757	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402
C760	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402
C761	2320544	Ceramic cap.	22 p	5 % 50 V 0402
C762	2312401	Ceramic cap.	1.0 u	10 % 10 V 0805
L100	3203705	Ferrite bead	0.015r 4	2r/100m 0805
L101	3203705	Ferrite bead	0.015r 42	2r/100m 0805
L102	3640477	Choke	6.— u	3 A 7.2x7.2
L103	3203717	Ferrite bead	60r/100	mhz 6a smd
L105	3640035	Filt z>450r/100m 0	r7max 0.2	a 0603
L106	3203709	Ferrite bead	0.5r 120ı	r/100m 0402
L200	3640035	Filt z>450r/100m 0	r7max 0.2	a 0603
L201	3640035	Filt z>450r/100m 0	r7max 0.2	a 0603
L202	3203723	Ferrite bead	0r35 68ı	r/100mhz 0603
L203	3203723	Ferrite bead	0r35 68ı	r/100mhz 0603
L500		Dir.coupler		
L502		Chip coil		5 % Q=12/100 MHz 0603
L503		Dir.coupler		-37.5mhz 2x1.4
L505		Ferrite bead		
L506		Ferrite bead		2r/100m 0805

NSE--8/9

System Module

	0040007	Ohin asil	100 -	
L600		Chip coil	180 n	5 % Q=35/100 MHz 0805
L601	3643037	Chip coil	180 n	5 % Q=35/100 MHz 0805
L602	3645005	Chip coil	15 n	10 % Q=12/100 MHz 0603
L603	3645009	Chip coil	33 n	5 % Q=12/100 MHz 0603
L604	3645035	Chip coil	47.Q n	5 % Q=12/100 MHz 0603
L605	3645017	•		10 % Q=10/100 MHz 0603
L606	3645193	Chip coil	18.Q n	5 % Q=12/100 MHz 0603
L607	3645181	Chip coil		10 % Q=10/100 MHz 0603
L608	3645121	Chip coil		5 % Q=32/800M 0603
L609	3645151	Chip coil	100 n	5 % Q=3/800M 0603
L610	3645151	Chip coil		5 % Q=3/800M 0603
L611	3645017	Chip coil		10 % Q=10/100 MHz 0603
L612	3645179	Chip coil		Q=8/100M 0603
L613	3645181	Chip coil		10 % Q=10/100 MHz 0603
L614	3645229	Chip coil	120 n	5 % Q=32/150 MHz 0603
L615	3203709	Ferrite be	ad	0.5r 120r/100m 0402
L616	3646055	Chip coil	8. Q n	5 % Q=28/800 MHz 0402
L617	3645131	Chip coil	8. Q n	5 % Q=8/100M 0603
L618	3645035	Chip coil	47.Q n	5 % Q=12/100 MHz 0603
L620	3640035	Filt z>450)r/100m 0r	7max 0.2a 0603
L700	3645163	Chip coil	22.Q n	10 % Q=12/100 MHz 0603
L701	3645031	Chip coil	330 n	10 % Q=20/25 MHz 0805
L702	3641601	Chip coil	150 n	2 % Q=35/100 MHz 0805
L703	3641622	Chip coil	220 n	5 % Q=30/100 MHz 0805
L704	3641622	Chip coil	220 n	5 % Q=30/100 MHz 0805
L705	3645161	Chip coil	150 n	5 % Q=14/100 MHz 0603
L707	3645029	Chip coil	1. Q u	10 % Q=45/10 MHz 0805
L708	3641541	Chip coil	47.Q n	2 % Q=40/200 MHz 0805
L709	3645195	Chip coil	82.Q n	5 % Q=12/100 MHz 0603
L710	3203709	Ferrite be	ad	0.5r 120r/100m 0402
B100	4510237	Crystal	32.768 k	+-20PPM 12.5PF
B400	514R029	Buzzer 95	5db 2670h	z 4.0v
G700	4350149	Vco 1942	–2067mhz	z 2.8v 10ma
G701	4510217	VCTCXO	13.000 M	+-5PPM 2.8V
G702		Vco 464n		
F100		SM, fuse		
Z500		Dupl 890-		
Z501		Cer filt 18		
Z502		Saw filter		
Z503				-1880mhz
Z504		Ant.sw+fi		
Z505				-1880mhz
_000	1000071		000, 17 10	

Z600	4511007	Sour filtor	947.5+-1	$2 \in M$	
Z600 Z601					
Z601 Z602		Saw filter 902.5+-12.5 M/3.8DB			
		Saw filter 1842.5+–37.5 M/3DB			
Z603		Saw filter 1747.5+–37.5 M			
Z700		Saw filter 71+-0.09 M			
Z701		Cer.filt 13+–0.09mhz Saw filter 232+–0.5 M/3DB			
Z702					
T600			•	z+/-100mhz	
V101	4110065	,		220V1 A SMA	
V103				9 pnp 30V 1 A SOT23	
V104	4110067	,			
V105		Tea1210 dc/dc conv 1.5a			
V108		Transistor x 22+4X10K npn UMV SOT363			
V109	4219904	Transistor x 22 UMX1 npn 40V SOT363			
V112	4113651	Trans. su	pr.QUAD	6V SOT23–5	
V200	4113651	Trans. su	pr.QUAD	6V SOT23–5	
V202	4219904	Transisto	r x 22 UM	X1 npn 40 V SOT363	
V207	4113651	Trans. su	pr.QUAD	6V SOT23–5	
V301	4113671	Tvs quad	6v1 esda	6v1w5	
V400	4864461	Led	Green	0603	
V401	4864461	Led	Green	0603	
V402	4864461	Led	Green	0603	
V403	4864461	Led	Green	0603	
V404	4864461	Led	Green	0603	
V405	4864461	Led	Green	0603	
V406	4864461	Led	Green	0603	
V409	4864461	Led	Green	0603	
V410	4110601	Diode	FAST	SOD323	
V412	4864461	Led	Green	0603	
V413	4864461	Led	Green	0603	
V500	4110079	Sch. diod	e x 2HSM	S282C 15V SOT323	
V702	4210100	Transistor BC848W npn 30V SOT323			
D300				8 33C10 UBGA144UBGA1	44
D301		•	mem.UBG		
D302			I STSOP3		
D303		IC, EEPR			
D700				sot3 TC7SL04FU	
N100		Ccont2h dct3 bb asic lbga8x8			
N101		Pscc u463v11g36t lfbga36			
N114		Transistor x 2			
N200			jp v3.1 st7	'525bga bga64	
N400			asic tssop		
11100	101 0-100	Clowiton			

System Module

N500	4350177	IC, pow.amp. 3.5 V
N501	4350171	IC, pow.amp. 3.5 V
N502	4340263	IC, RF amp.21DB/900MHZ
N503	4219941	Transistor x 2
N600	4370483	Crfu3 rf asic gsm/pcn bf tqfp-48
N700	4370351	Summa v2 rx,tx,pll,pcontr. tqfp48
N702	4340335	IC, regulator TK11228AM
S416	5219005	IC, SWsp-no 30vdc 50ma smSW
X100	5409107	SM, sim conn 2x3pol p2.54 h=1.6m
X101	5409109	SM, conn batt+antenna 2pol spr. P2
X102	5409109	SM, conn batt+antenna 2pol spr. P2
X501	5409109	SM, conn batt+antenna 2pol spr. P2
X504	5409111	SM, conn earth term. 1pol spring
A600	9517025	Rx-tx shield assy dmc01305
A601	9517024	Pa shield assy dmc01304 pica
	9854307	PCB GF7 118.5X44.0X1.0 M8 4/PA

[This page intentionally left blank]

System Module

[This page intentionally left blank]